Freeze-drying of vaccines : Contribution of mathematical modelling for assessing product heterogeneity and scale-up risks - INRA - Institut national de la recherche agronomique Accéder directement au contenu
Thèse Année : 2017

Freeze-drying of vaccines : Contribution of mathematical modelling for assessing product heterogeneity and scale-up risks

La lyophilisation des vaccins : contribution de la modélisation mathématique à l'évaluation de l'hétérogénéité desproduits et des risques de changement d'échelle

Résumé

Freeze-drying is the process of choice in pharmaceutical industry for the stabilization of heat sensitive products such as vaccines. However, due the product pre-conditioning in individual vials, this process is difficult to design and often results in batches presenting a significant heterogeneity in the quality of the final product. The main goal of this Ph.D. project was the development of a mathematical model making it possible to predict the risk of failure when designing the freeze-drying process, i.e., the percentage of "rejected vials". To this end, the work focused on the understanding and quantification of the sources responsible for heat and mass transfer variability during the process. Firstly, the vial-to-vial heat transfer variability was investigated by taking the vial bottom dimensions and the vial position on the shelf of equipment into account. The variability of geometrical dimensions observed within a batch of vials (i.e., contact area between the shelf and the vial and the mean bottom curvature depth) moderately influenced the heat transfer coefficient distribution among vials (by less than 10 %). Secondly, a original 3D mathematical model was developed in COMSOL Multiphysics to explain and predict atypical heat transfer observed in vials located at the border of the shelf during the freeze-drying process. Conduction through low-pressure water vapour appeared as the dominant mechanism explaining the additional heat transfer to border vials rather than as reported in literature radiation from the walls of the drying chamber. Furthermore, this 3D mathematical model was used to investigate the effect of the vial loading configuration and of the equipment characteristics on heat transfer variability. In a second part, mass transfer variability was quantified on a 5% sucrose solution and by focusing on two parameters, the resistance of the dried layer to mass transfer during sublimation and the characteristic desorption time. The dried layer resistance was assessed by combining complementary approaches, the pressure rise test and gravimetric methods. The estimated variability of the dried layer resistance was found to have a higher impact on the product temperature distribution than the heat transfer coefficient variability. The value and variability of characteristic desorption time was evaluated for different temperatures and made it possible to simulate moisture content heterogeneity between vials in the batch. In the last part of the work, the main quantified sources of heat and mass transfer variability were integrated in a mathematical model of freeze-drying process. This multi-vial, dynamic model was used not only to predict the evolution of product temperature and moisture content during freeze-drying for a batch of 100 vials, but also to estimate the percentage of vials that could potentially be rejected. The proposed approach, extended to a greater number of simulated vials, could be applied to calculate design spaces of the primary and secondary drying steps of freezedrying process at a known risk of failure.
La lyophilisation est le procédé de choix dans l'industrie pharmaceutique pour la stabilisation de produits thermosensibles tels que les vaccins. Cependant, en raison du pré-conditionnement du produit dans des flacons individuels, ce processus est difficile à concevoir et aboutit souvent à des lots présentant une hétérogénéité significative dans la qualité du produit final. L'objectif principal de ce doctorat a été le développement d'un modèle mathématique pour la conception du processus de lyophilisation à un niveau de risque donné, c'est à dire un pourcentage de flacons potentiellement non conformes. Le travail a porté sur la compréhension et la quantification des sources possibles responsables de la variabilité des transferts de chaleur et de matière lors du processus. Dans un premier temps, la variabilité du transfert de chaleur entre les flacons a été étudiée en considérant les dimensions du flacon et sa position sur l'étagère de l'équipement. La variabilité des dimensions géométriques observées dans un lot de flacons (i.e., l'aire de contact entre l'étagère et le flacon et la profondeur de concavité du fond) a influencé la distribution du coefficient de transfert de chaleur entre les flacons. De plus, un modèle mathématique original en 3D a été développé dans COMSOL Multiphysics pour expliquer et prédire les transferts de chaleur atypiques observés dans les flacons situés sur les bords de l'étagère lors du processus de lyophilisation. Les phénomènes conductifs à basse pression au sein de la vapeur d'eau ont été reportés comme un mécanisme dominant expliquant ces transferts de chaleur atypiques alors que les phénomènes radiatifs liés à la présence des parois de l'équipement ont toujours été cités dans la littérature. Par ailleurs, ce modèle mathématique en 3D a été utilisé pour étudier l'effet de la configuration de chargement du lyophilisateur et des caractéristiques de l'équipement sur la variabilité du transfert de chaleur. Dans un deuxième temps, la variabilité des transferts de matière a été évaluée sur une solution de saccharose à 5 % en considérant deux paramètres, la résistance de la couche sèche au transfert de matière pendant la sublimation et le temps caractéristique de désorption. La résistance à la couche sèche a été évaluée en combinant deux approches complémentaires, les tests de remontée de pression et la méthode gravimétrique. La variabilité estimée de la résistance à la couche séchée a eu un impact plus important sur la distribution de la température du produit que la variabilité du coefficient de transfert de chaleur. La valeur et la variabilité du temps caractéristique de désorption ont été évaluées pour différentes températures et ont permis de simuler l'hétérogénéité de la teneur en eau finale entre les flacons. Dans la dernière partie du travail, les principales sources quantifiées de variabilité des transferts de chaleur et de matière ont été intégrées dans un modèle mathématique de lyophilisation. Ce modèle dynamique multi-flacons a été utilisé non seulement pour prédire l'évolution de la température et de la teneur en eau du produit pendant la lyophilisation pour un lot de 100 flacons, mais aussi pour estimer le pourcentage de flacons potentiellement non conformes. L'approche de modélisation proposée, étendue à un plus grand nombre de flacons simulés, pourrait être utilisée pour calculer les "design spaces" (espaces de travail) des étapes de dessiccation primaire et secondaire du processus de lyophilisation à un risque connu de pourcentage de flacons non conformes.
Fichier principal
Vignette du fichier
64089_SCUTELLA_2017_archivage.pdf (9.9 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)
Loading...

Dates et versions

tel-02366530 , version 1 (16-11-2019)

Identifiants

  • HAL Id : tel-02366530 , version 1

Citer

Bernadette Scutella. Freeze-drying of vaccines : Contribution of mathematical modelling for assessing product heterogeneity and scale-up risks. Chemical and Process Engineering. Université Paris Saclay (COmUE), 2017. English. ⟨NNT : 2017SACLA034⟩. ⟨tel-02366530⟩
2121 Consultations
416 Téléchargements

Partager

Gmail Facebook X LinkedIn More