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Combining Elimination Rules in Tree-BasedNearest Neighbor Searh AlgorithmsEva Gómez-Ballester1, Luisa Mió1, Frank Thollard2, Jose Onina1, andFraniso Moreno-Seo1

1 Dept. Lenguajes y Sistemas InformátiosUniversidad de Aliante, E-03071 Aliante, Spain{eva,mio,onina,pao}�dlsi.ua.es
2 Grenoble University, LIGBP 53, 38041 Grenoble Cedex 9thollard�univ-st-etienne.frAbstrat. A ommon ativity in many pattern reognition tasks, im-age proessing or lustering tehniques involves searhing a labeled dataset looking for the nearest point to a given unlabelled sample. To re-due the omputational overhead when the naive exhaustive searh isapplied, some fast nearest neighbor searh (NNS) algorithms have ap-peared in the last years. Depending on the struture used to store thetraining set (usually a tree), di�erent strategies to speed up the searhhave been de�ned. In this paper, a new algorithm based on the ombina-tion of di�erent pruning rules is proposed. An experimental evaluationand omparison of its behavior with respet to other tehniques has beenperformed, using both real and arti�ial data.1 IntrodutionNearest Neighbor Searh (NNS) is an important tehnique in a variety of appli-ations inluding pattern reognition [6℄, vision [13℄, or data mining [1, 5℄. Thesetehniques aim at �nding the objet of a set nearest to a given test objet, usinga distane funtion [6℄. The use of a simple brute-fore method is sometimes abottlenek due to the large number of distanes that should be omputed and/ortheir omputational e�ort. In this work we have onsidered the omputationalproblem of �nding nearest neighbors in general metri spaes. Spaes that maynot be onveniently embedded or approximated in an Eulidean spae are of par-tiular interest. Many tehniques have been proposed for using di�erent types ofstrutures (vp-tree [16℄, GNAT [3℄, sa-tree [10℄, AESA [14℄, M-tree [4℄): the tree-based tehniques are nevertheless more popular. The Fukunaga and Narendraalgorithm (FNA [7℄) is one of the �rst known tree-based example of this typeof tehniques. It prunes the traversal of the tree by taking advantage, as theaforementioned methods, of the triangular inequality of the distane betweenthe prototypes. This sets up a general framework for designing and evaluatingnew pruning rules, as stated in [9℄.



In this paper we study the ombination of di�erent pruning rules: reenttable rule [12℄, a rule that is based on information stored in the sibling node (thesibling rule [9℄), the original rule from the FNA (Fukunaga and Narendra rule,FNR), and a generalization of both the sibling rule and the FNR one [9℄. Weend up with a new algorithm for ombining the rules that signi�antly reduesthe number of distane omputations.The algorithm is evaluated on both arti�ial and real world data and om-pared with state-of-the-art methods.The paper is organized as follows: we will �rst reall the FNA algorithm andde�ne the general framework of the new algorithm (in partiular how the tree isbuilt). We then review the di�erent rules we aim at ombining (setion 3). Wethen propose our new algorithm (setion 4). Setions 5 presents the experimentalomparison.2 The basi algorithmThe FNA is a fast tree-based searh method that an work in general metrispaes. In the original FNA the c-means algorithm was used to de�ne the parti-tion of the data. In the work by Gómez-Ballester et al [8℄ many strategies wereexplored: the best one, namely the Most Distant from the Father tree (MDF),in whih the representative of the left node is the same as the representative ofits father, is the strategy used in the experiments presented in this work. Thus,eah time when an expansion of the node is neessary, only one new distaneneeds to be omputed (instead of two), hene reduing the number of distanesomputed. This strategy was also suessfully used by Noltomeier et al [11℄ inthe ontext of bisetor trees.In the MDF tree eah leaf stores a point of the searh spae. The informationstored in eah node t is St, the set of points stored in the leaves of t sub-tree, Mt(the representative of St) and the radius of St, Rt = argmaxx∈St
d(Mt, x). Figure1 shows a partition of the data in a 2-dimensional unit hyperube. The root nodewill be assoiated with all the points of the set. The left node will represent allthe points that belong to the hyperplane under the segment [(0, 0.95) ; (0.65,0)℄;the right node will be assoiated with the other points. Aording to the MDFstrategy, the representative of the right node (Mr) is the same as the father, andthe representative of the left node (Mℓ) is the most distant point to Mr. Thespae is then reursively partitioned.3 A review of pruning rulesFukunaga and Narendra Rule (FNR)The pruning rule de�ned by Fukunaga and Narendra for internal nodes makesuse of the information in the node t to be pruned (with representative Mt andradius Rt) and the hyperspherial surfae entered in the sample point x withradius d(x, nn), where nn is urrent nearest prototype. To apply this rule it is
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Mr, and the nearest point, eℓ, in the sibling node ℓ (Sℓ). Figure 2b presents agraphial view of the Sibling based rule.Rule: No y ∈ Sℓ an be the nearest neighbor to x if d(Mr, x) + d(x, nn) <

d(Mr, eℓ).Unlike the FNR, SBR an be applied to eliminate node ℓ without omputing
d(Mℓ, x), avoiding some extra distane omputations at searh time.Generalized rule (GR)This rule is an iterated ombination of the FNR and the SBR (due to spaeonstraints we refer the reader to [9℄ for details on the generalized rule). In GR,the distane to the representative of a given node is needed to know if the nodean be pruned or not.
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(b) Geometrial view of SBR rule.The table rule (TR)This reent rule [12℄ prunes the tree by taking the urrent nearest neighbor as areferene. In order to do so, a new distane should be de�ned:De�nition. Given a prototype or sample point p, the distane between p toa set of prototypes S is de�ned as
d(p, S) = min

y∈S
d(p, y)At pre-proess time, the distanes from eah prototype to eah prototype setof eah node t, St, in the tree are omputed and stored in a table, allowing aonstant time pruning. Note that the size of this table is quadrati in the numberof prototypes sine, as the tree is binary, the number of nodes is two times thenumber of prototypes.
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Fig. 2: Table rule and node St: situation where it an be pruned (up) and where itannot (down)Rule: No y ∈ St an be the nearest neighbor to x if 2d(nn, x) < d(nn, St).Figure 2 presents a graphial view of the table rule. Note that this rule anbe used before omputing the distane to the node that will be explored.



4 CPR: Combining Pruning Rules algorithmIn Algorithm 1 an e�ient ombination of pruning rules is proposed. Note that,as the GR generalizes both the FNR and the SBR, these two rules are not appliedwhile the generalized one is ativated (lines 11-19). When the MDF method isused to build the tree, it is important to note that eah time a node is expanded,only one of the representatives is new (the left node), while the other (right)is the same as the father node (in this ase, only the radius of the node anhange). For this reason, in this ase the distane dr = d(x, Mr) in line 9 isnever omputed (as it is already known). Then, when a node is examined duringthe searh, every pruning that an be applied without omputing a new distaneis applied (lines 3 to 8). If none of these rules is able to prune, the distane to theurrent node is omputed (line 9). The pruning rules that use the new distaneare then applied (lines 11 to 28).5 ExperimentsWe have performed some experiments in order to ompare our algorithm withsome state of the art methods. The �rst method, the multi-vantage-point tree(mvp), is a balaned tree requiring linear spae where the arity an be extendedand multiple pivots per node an be applied [2℄. The seond method is the Spa-tial Approximation Tree (sat), whose struture uses a graph based on Delaunaytriangulation and it does not depend on any parameter [10℄. The ode of thesealgorithms omes from the SISAP library (www.sisap.org). We applied the mvpwith only one pivot by node, a buket size of 1 and an arity of 2 as this settingleads to better performanes aording to preliminary experiments on these datasets. All the experiments were performed on a Linux box with 16GB of memory.From now and only for the graphs, the FNR rule (and respetively the SBR,GR and TR rules) will be abbreviated by "f" (respetively "s", "g" and "t");onsequently, ombining the FBR and SBR will be referred as "fs". The ombi-nations of rule "g" with "s" or "f" are not present as "g" generalizes these rules:every branh pruned by one of them is also pruned by "g".In order to evaluate the performane of di�erent ombined rules, we present inthis setion the experiments on both arti�ial and real world data using di�erentsettings of our algorithm.5.1 Arti�ial data with uniform distributionsWe onsider here points drawn in a spae of dimension n ranging from 5 to 30.The algorithms are ompared with a growing number of prototypes. The sizeof the prototype sets ranged from 2, 000 prototypes to 30, 000 in steps of 4, 000.Eah experiment measures the average distane omputations of 10, 000 searhes(1, 000 searhes over 10 di�erent prototype sets). The samples are drawn fromthe same distribution.



Algorithm 1: CPR(t,x)Data: t: a node tree; x: a sample point;Result: nn: the nearest neighbor prototype; dmin: the distane to nn;if t is not a leaf then1
r = right_child(t); ℓ = left_child(t);2 if ( SBR(ℓ) || TR(ℓ) ) then3 if (no FNR(r)) && (no TR(r)) then4 CPR(r, x) /* left (sibling) node has been pruned */;5 end6 Return /* ie prune both */ ;7 end8
dr = d(x,Mr) ; dℓ = d(x,Mℓ);9 update dmin and nn;10 if Ativated(GR) then11 if dℓ < dr then12 if ( no GR(ℓ) ) then CPR(ℓ, x);13 if ( no GR(r) ) then CPR(r, x);14 else15 if (no GR(r)) then CPR(r, x);16 if (no GR(ℓ)) then CPR(ℓ, x);17 end18 else19 if dℓ < dr then20 if (no FNR(ℓ)) && (no SBR(ℓ)) then CPR(ℓ, x);21 if (no FNR(r)) && (no SBR(r)) then CPR(r, x);22 else23 if (no FNR(r)) && (no SBR(r)) then CPR(r, x);24 if (no FNR(ℓ)) && (no SBR(ℓ)) then CPR(ℓ, x);25 end26 end27 end28

Figure 3a shows the average number of distane omputations in a 10-dimensionalspae following a uniform distribution. Standard deviation of measures is notinluded as it is almost negligible. As it an be seen, both sat and mvp are out-performed by the other pruning rules. Although the table rule also outperformsthe FNR and GR ones, it is worth mentioning that these methods have a spaeonsumption smaller than the table rule. In the ase of small spae apabilities,these methods should be preferred. Considering the lassi FNA algorithm as areferene, we observe that GR and TR rules outperform the original rule, namelyFNR. Moreover, it appears that ombining the table rule, with either the siblingor generalized rule, does not perform better than ombining the FNR and thetable rule. This is important as the FNR rule has an e�etive omputationalost smaller than the generalized rule. Furthermore, sine the "g" rule also gen-
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(b) Distane omputations w.r.t dimen-sionality.Fig. 3: Comparison of di�erent pruning rules ombinations with sat andmvp algorithmseralizes the sibling rule, the ombination of "fst" does not perform better than"fg", as expeted.Another lassi problem to address is the urse of dimensionality3 . It ex-presses the fat that the volume of the unit hyperube inreases exponentiallywith the dimension of the spae. In other words, the points tend to be at thesame distane one to eah other in great dimensions. In our setting, this willobviously prevent a large number of prunings: the algorithm will tend to behavelike the brute fore algorithm as the dimension inreases. This algorithmi limi-tation is not a real problem sine looking for a nearest neighbor does not makesense in a spae where the distanes between eah pair of points are similar.Figure 3b addresses a omparative analysis of the behavior of the methodsas the dimension inreases. The number of prototype is set to 11, 000 points andthe dimensionality ranges from 2 to 30. It an be observed here that the TRrule is less sensible to the dimensionality than the other methods. Moreover, asbefore, ombining the TR rule with the FNR one still performs better than theother ombinations: at dimension 25, the "ft" ombination is able to save 20%of distane omputations while the other methods ompute all the distanes, asthe exhaustive searh.Two more experiments were performed: �rst, in order to show the di�ereneswhen a best-�rst strategy is used instead of a depth-�rst strategy. In Figure 4aone an see that similar results are obtained, for this reason, only depth-�rststrategy is used in this work. Seond, as well as the distane omputations, theperentage of the database examined is analyzed for all the methods. Results anbe seen in Figure 4b. As in the ase of distane omputations, the CPR methodalso redues the overhead of the searh visiting on average less nodes (or pointsin the data set).3 The urse of dimensionality is usually onsidered in Eulidean spaes.
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