O. Alata and L. Quintard, Is there a best color space for color image characterization or representation based on multivariate gaussian mixture model? Computer Vision and Image Understanding, p.867877, 2009.
DOI : 10.1016/j.cviu.2009.03.001

P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, Contour Detection and Hierarchical Image Segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.33, issue.5, p.898916, 2011.
DOI : 10.1109/TPAMI.2010.161

D. Arthur and S. Vassilvitskii, k-means++: The advantages of careful seeding, Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, p.10271035, 2007.

A. Banerjee, S. Inderjit, J. Dhillon, S. Ghosh, and . Sra, Clustering on the unit hypersphere using von mises-sher distributions, In Journal of Machine Learning Research, p.13451382, 2005.

A. Banerjee, S. Merugu, S. Inderjit, J. Dhillon, and . Ghosh, Clustering with Bregman Divergences, The Journal of Machine Learning Research, vol.6, p.17051749, 2005.
DOI : 10.1137/1.9781611972740.22

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.6.2778

M. Bangert, P. Hennig, and U. Oelfke, Using an innite von mises-sher mixture model to cluster treatment beam directions in external radiation therapy, Machine Learning and Applications (ICMLA) Ninth International Conference on, p.746751, 2010.

T. Jonathan, J. Barron, and . Malik, Intrinsic scene properties from a single rgb-d image, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), p.1724, 2013.

J. Baudry, E. Adrian, G. Raftery, K. Celeux, R. Lo et al., Combining Mixture Components for Clustering, Journal of Computational and Graphical Statistics, vol.19, issue.2, p.332353, 2010.
DOI : 10.1198/jcgs.2010.08111

URL : https://hal.archives-ouvertes.fr/inria-00321090

L. Bergé, C. Bouveyron, and S. Girard, Package for Model-Based Clustering and Discriminant Analysis of High-Dimensional Data, Journal of Statistical Software, vol.46, issue.6, p.129, 2012.
DOI : 10.18637/jss.v046.i06

A. Bhalerao and C. Westin, Hyperspherical von mises-sher mixture (hvmf ) modelling of high angular resolution diusion mri

C. Biernacki, G. Celeux, and G. Govaert, Assessing a mixture model for clustering with the integrated completed likelihood, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.22, issue.7, p.719725, 2000.
DOI : 10.1109/34.865189

C. Biernacki, G. Celeux, and G. Govaert, Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models, Computational Statistics & Data Analysis, vol.41, issue.3-4, p.561575, 2003.
DOI : 10.1016/S0167-9473(02)00163-9

S. Avleen, M. Bijral, . Breitenbach, Z. Gregory, and . Grudic, Mixture of watson distributions: a generative model for hyperspherical embeddings, International Conference on Articial Intelligence and Statistics, p.3542, 2007.

M. Christopher and . Bishop, Pattern recognition and machine learning, 2006.

J. Boissonnat, F. Nielsen, and R. Nock, Bregman Voronoi Diagrams, Discrete & Computational Geometry, vol.12, issue.2, p.281307, 2010.
DOI : 10.1007/s00454-010-9256-1

URL : https://hal.archives-ouvertes.fr/hal-00488441

C. Buchta, M. Kober, I. Feinerer, and K. Hornik, Spherical k-means clustering, Journal of Statistical Software, vol.50, issue.10, p.122, 2012.

P. Kenneth, . Burnham, R. David, and . Anderson, Model selection and multi-model inference: a practical information-theoretic approach, 2002.

. Ryanp, . Cabeen, . Marke, D. Bastin, and . Laidlaw, Estimating constrained multiber diusion mr volumes by orientation clustering, Medical Image Computing and Computer-Assisted Intervention -MICCAI 2013, p.8289, 2013.

M. Cheng, G. Zhang, N. J. Mitra, X. Huang, and S. Hu, Global contrast based salient region detection, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), p.409416, 2011.
DOI : 10.1109/cvpr.2011.5995344

URL : http://cg.cs.tsinghua.edu.cn/papers/PAMI-2014-Saliency.pdf

A. Cherian, V. Morellas, N. Papanikolopoulos, J. Saad, and . Bedros, Dirichlet process mixture models on symmetric positive denite matrices for appearance clustering in video surveillance applications, Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, p.34173424, 2011.

C. Dal-mutto, P. Zanuttigh, M. Guido, and . Cortelazzo, Fusion of Geometry and Color Information for Scene Segmentation, IEEE Journal of Selected Topics in Signal Processing, vol.6, issue.5, p.505521, 2012.
DOI : 10.1109/JSTSP.2012.2194474

C. Dal-mutto, P. Zanuttigh, M. Guido, and . Cortelazzo, Time-of-ight cameras and microsoft Kinect™, 2012.

S. Inderjit, S. Dhillon, and . Sra, Modeling data using directional distribu- tions, 2003.

F. Pedro, . Felzenszwalb, P. Daniel, and . Huttenlocher, Ecient graph-based image segmentation, International Journal of Computer Vision, vol.59, issue.2, p.167181, 2004.

B. Fernando, E. Fromont, D. Muselet, and M. Sebban, Supervised learning of Gaussian mixture models for visual vocabulary generation, Pattern Recognition, vol.45, issue.2, p.897907, 2012.
DOI : 10.1016/j.patcog.2011.07.021

A. T. Mario, A. K. Figueiredo, and . Jain, Unsupervised learning of nite mixture models, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, issue.3, p.381396, 2002.

R. Jaime, . Fonseca, G. Margarida, and . Cardoso, Mixture-model cluster analysis using information theoretical criteria, Intelligent Data Analysis, vol.11, issue.2, p.155173, 2007.

C. Fraley, A. E. Raftery, T. B. Murphy, and L. Scrucca, mclust version 4 for r: Normal mixture modeling for model-based clustering, classication, and density estimation, 2012.

C. Fraley and A. E. Raftery, How many clusters? which clustering method? answers via model-based cluster analysis. The computer journal, p.41578588, 1998.
DOI : 10.1093/comjnl/41.8.578

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.101.5035

C. Fraley and A. E. Raftery, Model-Based Clustering, Discriminant Analysis, and Density Estimation, Journal of the American Statistical Association, vol.97, issue.458, p.611631, 2002.
DOI : 10.1198/016214502760047131

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.27.5734

C. Fraley and A. E. Raftery, Model-based methods of classication: using the mclust software in chemometrics, Journal of Statistical Software, vol.18, issue.6, p.113, 2007.

J. Freixenet, X. Muñoz, D. Raba, J. Martí, and X. Cufí, Yet Another Survey on Image Segmentation: Region and Boundary Information Integration, Computer Vision—ECCV, p.408422, 2002.
DOI : 10.1007/3-540-47977-5_27

V. Garcia and F. Nielsen, Simplication and hierarchical representations of mixtures of exponential families, Signal Processing, vol.90, issue.12, p.31973212, 2010.

V. Garcia, F. Nielsen, and R. Nock, Levels of Details for Gaussian Mixture Models, Computer VisionACCV, p.514525, 2009.
DOI : 10.1007/978-3-642-12304-7_48

J. Glover, G. Bradski, and R. B. Rusu, Monte Carlo Pose Estimation with Quaternion Kernels and the Bingham Distribution, Robotics: Science and Systems VII, p.97, 2012.
DOI : 10.15607/RSS.2011.VII.015

J. Goldberger, T. Sam, and . Roweis, Hierarchical clustering of a mixture model, Advances in Neural Information Processing Systems, p.505512, 2004.

S. Gopal and Y. Yang, Von mises-sher clustering models, Proceedings of The 31st International Conference on Machine Learning, p.154162, 2014.

C. Grana, D. Borghesani, and R. Cucchiara, Describing texture directions with Von Mises distributions, 2008 19th International Conference on Pattern Recognition, p.14, 2008.
DOI : 10.1109/ICPR.2008.4761821

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.214.2977

S. Gupta, P. Arbelaez, and J. Malik, Perceptual Organization and Recognition of Indoor Scenes from RGB-D Images, 2013 IEEE Conference on Computer Vision and Pattern Recognition, p.564571, 2013.
DOI : 10.1109/CVPR.2013.79

J. Han, L. Shao, D. Xu, and J. Shotton, Enhanced computer vision with microsoft kinect sensor: A review, IEEE Transactions on Cybernetics, vol.43, 2013.

P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor environments, The International Journal of Robotics Research, vol.1883, issue.1, p.31647663, 2012.
DOI : 10.1023/A:1008854305733

C. Herrera, J. Kannala, and J. Heikkilä, Joint Depth and Color Camera Calibration with Distortion Correction, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.34, issue.10, p.20582064, 2012.
DOI : 10.1109/TPAMI.2012.125

R. John, . Hershey, A. Peder, and . Olsen, Approximating the kullback leibler divergence between gaussian mixture models, Acoustics, Speech and Signal Processing IEEE International Conference on, p.317, 2007.

D. Holz, S. Holzer, R. B. Rusu, and S. Behnke, Real-Time Plane Segmentation Using RGB-D Cameras, RoboCup 2011: Robot Soccer World Cup XV, p.306317, 2012.
DOI : 10.1007/978-3-642-32060-6_26

E. Andres-houseman, C. Brock, R. Christensen, C. J. Yeh, . Marsit et al., Model-based clustering of DNA methylation array data: a recursive-partitioning algorithm for high-dimensional data arising as a mixture of beta distributions, BMC Bioinformatics, vol.9, issue.1, p.365, 2008.
DOI : 10.1186/1471-2105-9-365

S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe et al., KinectFusion, Proceedings of the 24th annual ACM symposium on User interface software and technology, UIST '11, p.559568, 2011.
DOI : 10.1145/2047196.2047270

K. Anil, . Jain, . Murty, J. Patrick, and . Flynn, Data clustering: a review, ACM computing surveys (CSUR), issue.3, p.31264323, 1999.

A. Juan and E. Vidal, On the use of bernoulli mixture models for text classication, Pattern Recognition, vol.35, issue.12, p.27052710, 2002.

Z. Kato, Segmentation of color images via reversible jump MCMC sampling, Image and Vision Computing, vol.26, issue.3, p.361371, 2008.
DOI : 10.1016/j.imavis.2006.12.004

K. Khoshelham and S. O. Elberink, Accuracy and Resolution of Kinect Depth Data for Indoor Mapping Applications, Sensors, vol.12, issue.12, p.14371454, 2012.
DOI : 10.3390/s120201437

T. Kobayashi and N. Otsu, Von mises-sher mean shift for clustering on a hypersphere, 20th International Conference on Pattern Recognition (ICPR), p.21302133, 2010.

A. Hema-swetha-koppula, T. Anand, A. Joachims, and . Saxena, Semantic labeling of 3d point clouds for indoor scenes, NIPS, p.4, 2011.

K. Lai, L. Bo, X. Ren, and D. Fox, A large-scale hierarchical multi-view RGB-D object dataset, 2011 IEEE International Conference on Robotics and Automation, p.18171824, 2011.
DOI : 10.1109/ICRA.2011.5980382

D. Lanman and G. Taubin, Build your own 3D scanner, ACM SIGGRAPH 2009 Courses on, SIGGRAPH '09, p.8, 2009.
DOI : 10.1145/1667239.1667247

M. Liu, C. Baba, S. Vemuri, F. Amari, and . Nielsen, Shape retrieval using hierarchical total bregman soft clustering, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.34, issue.12, p.24072419, 2012.

Y. Ma, H. Derksen, W. Hong, and J. Wright, Segmentation of Multivariate Mixed Data via Lossy Data Coding and Compression, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.29, issue.9, p.15461562, 2007.
DOI : 10.1109/TPAMI.2007.1085

R. Maitra, P. Ivan, and . Ramler, -mean-directions Algorithm for Fast Clustering of Data on the Sphere, Journal of Computational and Graphical Statistics, vol.19, issue.2, p.2010
DOI : 10.1198/jcgs.2009.08155

URL : https://hal.archives-ouvertes.fr/inria-00607276

L. Wendy, A. Martinez, J. Martinez, and . Solka, Exploratory data analysis with MATLAB, Second Edition, 2010.

A. Martínez-usó, F. Pla, and P. García-sevilla, Unsupervised colour image segmentation by low-level perceptual grouping, Pattern Analysis and Applications, vol.32, issue.200, p.581594, 2013.
DOI : 10.1007/s10044-011-0259-1

T. Mcgraw, B. Vemuri, R. Yezierski, and T. Mareci, Segmentation of high angular resolution diusion mri modeled as a eld of von mises-sher mixtures, Computer VisionECCV, p.463475, 2006.

G. Mclachlan and D. Peel, Finite mixture models, Wiley. com, 2004.
DOI : 10.1002/0471721182

V. Melnykov and R. Maitra, Finite mixture models and model-based clustering, Statistics Surveys, vol.4, issue.0, p.80116, 2010.
DOI : 10.1214/09-SS053

. Luc, Vergauwen Maarten Moons, Theo ; Van Gool. 3d Reconstruction from Multiple Images: Part 1: Principles, 2009.

P. Kevin and . Murphy, Machine learning: a probabilistic perspective, 2012.

T. M. Nguyen and Q. Wu, Fast and Robust Spatially Constrained Gaussian Mixture Model for Image Segmentation, IEEE transactions on circuits and systems for video technology, p.621635, 2013.
DOI : 10.1109/TCSVT.2012.2211176

T. M. Nguyen and Q. Wu, Robust student's-t mixture model with spatial constraints and its application in medical image segmentation, IEEE Transactions on Medical Imaging, vol.31, issue.1, p.103116, 2012.

F. Nielsen and V. Garcia, Statistical exponential families: A digest with ash cards. CoRR, abs/0911, 2009.

Y. Niu, Y. Geng, X. Li, and F. Liu, Leveraging stereopsis for saliency analysis, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), p.454461, 2012.

R. Nock and F. Nielsen, Statistical region merging, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.26, issue.11, p.14521458, 2004.
DOI : 10.1109/TPAMI.2004.110

M. Paluszewski and T. Hamelryck, Mocapy++ - A toolkit for inference and learning in dynamic Bayesian networks, BMC Bioinformatics, vol.11, issue.1, p.126, 2010.
DOI : 10.1023/A:1008929526011

D. Peel, J. William, . Whiten, J. Georey, and . Mclachlan, Fitting mixtures of kent distributions to aid in joint set identication, Journal of the American Statistical Association, issue.453, p.965663, 2001.

B. Peng and D. Zhang, Automatic Image Segmentation by Dynamic Region Merging, IEEE Transactions on Image Processing, vol.20, issue.12, p.35923605, 2011.
DOI : 10.1109/TIP.2011.2157512

H. Permuter, J. Francos, and I. Jermyn, A study of gaussian mixture models of color and texture features for image classication and segmentation, Pattern Recognition, vol.39, issue.4, p.695706, 2006.

A. Prati, S. Calderara, and R. Cucchiara, Using circular statistics for trajectory shape analysis, 2008 IEEE Conference on Computer Vision and Pattern Recognition, p.18, 2008.
DOI : 10.1109/CVPR.2008.4587837

X. Ren, L. Bo, and D. Fox, Rgb-(d) scene labeling: Features and algorithms, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), p.27592766, 2012.

A. Douglas, . Reynolds, F. Thomas, R. B. Quatieri, and . Dunn, Speaker verication using adapted gaussian mixture models, Digital signal processing, vol.10, issue.1, p.1941, 2000.

R. Radu-bogdan, Semantic 3D Object Maps for Everyday Robot Manipulation, 2013.

S. Salvador and P. Chan, Determining the number of clusters/segments in hierarchical clustering/segmentation algorithms, 16th IEEE International Conference on Tools with Artificial Intelligence, p.576584, 2004.
DOI : 10.1109/ICTAI.2004.50

A. Sedpour and N. Bouguila, Spatial color image segmentation based on nite non-gaussian mixture models, Expert Systems with Applications, vol.39, issue.10, p.89939001, 2012.

G. Skas, C. Nikou, and N. Galatsanos, Robust image segmentation with mixtures of student's t-distributions, IEEE International Conference on Image Processing, p.273, 2007.

F. Sha, K. Lawrence, and . Saul, Large margin gaussian mixture modeling for phonetic classication and recognition, IEEE International Conference on Acoustics, Speech and Signal Processing, 2006.

D. Bibliography-nathan-silberman, P. Hoiem, R. Kohli, and . Fergus, Indoor segmentation and support inference from rgbd images, Computer VisionECCV 2012, p.746760, 2012.

M. Souden, K. Kinoshita, and T. Nakatani, An integration of source location cues for speech clustering in distributed microphone arrays, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, p.111115, 2013.
DOI : 10.1109/ICASSP.2013.6637619

S. Sra, A short note on parameter approximation for von mises-sher distributions: and a fast implementation of i s (x), Computational Statistics, vol.27, issue.1, p.177190, 2012.

S. Sra and D. Karp, The multivariate Watson distribution: Maximum-likelihood estimation and other aspects, Journal of Multivariate Analysis, vol.114, pp.256-269, 2013.
DOI : 10.1016/j.jmva.2012.08.010

J. Strom, A. Richardson, and E. Olson, Graph-based segmentation for colored 3D laser point clouds, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, p.21312136, 2010.
DOI : 10.1109/IROS.2010.5650459

R. Szeliski, Computer vision: algorithms and applications, 2011.
DOI : 10.1007/978-1-84882-935-0

J. Camillo, A. Taylor, and . Cowley, Segmentation and analysis of rgb-d data, Proceedings of Robotics Science and Systems (RSS), 2011.

J. Camillo, A. Taylor, and . Cowley, Parsing indoor scenes using rgb-d imagery, Robotics: Science and Systems VIII, p.401408, 2013.

R. Tibshirani, G. Walther, and T. Hastie, Estimating the number of clusters in a data set via the gap statistic, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.63, issue.2, p.411423, 2001.
DOI : 10.1111/1467-9868.00293

A. Trémeau and P. Colantoni, Regions adjacency graph applied to color image segmentation, IEEE Transactions on Image Processing, vol.9, issue.4, p.735744, 2000.
DOI : 10.1109/83.841950

J. Jakob, N. Verbeek, B. Vlassis, and . Kröse, Ecient greedy learning of gaussian mixture models, Neural computation, vol.15, issue.2, p.469485, 2003.

N. Vlassis and A. Likas, A greedy em algorithm for gaussian mixture learning, Neural Processing Letters, vol.15, issue.1, p.7787, 2002.

T. Dang-hai, R. Vu, and . Haeb-umbach, Blind speech separation employing directional statistics in an expectation maximization framework, Int. Con. on Acoustics, Speech, and Signal Processing, 2010.

S. Georey and . Watson, The theory of concentrated langevin distributions, Journal of Multivariate Analysis, vol.14, issue.1, p.7482, 1984.

R. Wehrens, M. Lutgarde, C. Buydens, A. E. Fraley, and . Raftery, Modelbased clustering for image segmentation and large datasets via sampling, Journal of Classication, vol.21, issue.2, p.231253, 2004.

N. Zhang, Fibre Processes and their Applications, 2013.

Z. Zhang, Microsoft kinect sensor and its eect, MultiMedia, IEEE, vol.19, issue.2, p.410, 2012.

Q. Zhao, V. Hautamaki, and P. Fränti, Knee Point Detection in BIC for Detecting the Number of Clusters, Advanced Concepts for Intelligent Vision Systems, p.664673, 2008.
DOI : 10.1007/s100440070007

S. Zhong and J. Ghosh, A unied framework for model-based clustering, The Journal of Machine Learning Research, vol.4, p.10011037, 2003.