Approche holistique du contrôle du focus en photolithographie 193nm immersion pour les niveaux critiques en 28nm et 14nm FD-SOI - Université Jean-Monnet-Saint-Étienne Accéder directement au contenu
Thèse Année : 2016

A holistic approach of focus control for 193nm immersion lithography for critical layers in 28nm and 14nm FD-SOI technologies

Approche holistique du contrôle du focus en photolithographie 193nm immersion pour les niveaux critiques en 28nm et 14nm FD-SOI

Résumé

The increasing complexity in chip integration and the race to dimension shrinkage are the two main drivers of microelectronics today. The optical limitations of lithography have been reached some years. Because of these, the manufacturing itself needs to be more tightly controlled in order to avoid marginalities. Which will affect the chip operation. This thesis presents a holistic approach of the control of one of the main parameters for photolithography: focus. It is directly linked to the quality of the image transferred into the photoresist during exposure. Its control is then essential. Variability sources for focus are manifold and diverse but this work focuses on the topography of the substate. The holistic approach of topology leaded to the use of data mining tooling as partial least square regression. It allowed the highlighting of main causes of topography, the creation of a predictive model of topology and the evaluation of several improvement solutions. Scanner levelling improvements which might be effective for every technology without any modification to make on integration and design. The emulated wafer map methodology providing on-product focus non-uniformities without any measurements is also a solution for investigation. Solutions to mitigate the risk factors by modifying the design topography built-up main factors were also envisioned.
La complexification des intégrations sur les puces électroniques et la course à la miniaturisation sont les deux moteurs actuels de la microélectronique. Les limites optiques de la lithographie sont déjà atteintes depuis longtemps. Ainsi, la fabrication doit aussi être contrôlée de plus en plus étroitement afin d’éviter des variabilités qui nuiraient au bon fonctionnement du produit. Cette thèse présente une approche holistique du contrôle d’un des paramètres les plus importants de la photolithographie : le focus. Celui-ci est directement lié à la qualité de l’image transférée dans la résine photosensible pendant l’exposition. Son contrôle est donc primordial. Les sources de variabilités du focus sur le wafer sont multiples et diverses mais le cas particulier de la topographie du substrat a été privilégié dans cette étude. L’approche holistique de cet effet en particulier a conduit à l’utilisation d’outils de « data mining » telle la régression par la méthode des moindres carrés partiels qui a permis de pointer les principales causes de cette topographie, de créer un modèle prédictif de la topologie mais aussi d’évaluer des solutions d’améliorations comme l’amélioration des corrections qu’effectue le scanner permettant un meilleur contrôle généralisé de toutes les technologies sans toutefois changer l’intégration et le design ou encore la mise en place d’une méthode qui permet d’évaluer les erreurs de focus sur le wafer sans pour autant avoir recours à des mesures intensives sur silicium. D’autres solutions permettent de corriger les facteurs de risques à la source en modifiant le design afin de limiter la formation de la topologie de surface.
Fichier principal
Vignette du fichier
THESE_JEAN-GABRIEL_SIMIZ.pdf (16.65 Mo) Télécharger le fichier

Dates et versions

tel-01419388 , version 1 (19-12-2016)
tel-01419388 , version 2 (07-01-2019)

Identifiants

  • HAL Id : tel-01419388 , version 1

Citer

Jean-Gabriel Simiz. Approche holistique du contrôle du focus en photolithographie 193nm immersion pour les niveaux critiques en 28nm et 14nm FD-SOI. Micro et nanotechnologies/Microélectronique. Université de Lyon, 2016. Français. ⟨NNT : ⟩. ⟨tel-01419388v1⟩

Collections

LAHC
326 Consultations
638 Téléchargements

Partager

Gmail Facebook X LinkedIn More