T. Vos, C. Allen, M. Arora, R. M. Barber, Z. A. Bhutta et al., Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study, The Lancet, vol.388, pp.1545-1602, 2015.

, ISBN 9283204298, 2014.

H. Wang, M. Naghavi, C. Allen, R. M. Barber, A. Carter et al., Global, regional, and national life expectancy, allcause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study, The Lancet, vol.388, pp.1459-1544, 2015.

, Statistik Austria: Die informationsmanager, pp.2017-2027

, World Health Organization: WHO. Management of Substance Abuse Unit. Global status report on alcohol and health, 2014.

Y. S. Cho and K. H. Ryu, Predictive pattern analysis using SOM in medical data sets for medical treatment service, Computational Intelligence in Bioinformatics and Computational Biology, pp.1-5, 2014.

M. F. Moyers and S. M. Vatnitsky, Practical implementation of light ion beam treatments, 2012.

H. Paganetti, Proton therapy physics, 2016.

R. R. Wilson, Radiological use of fast protons, Radiology, vol.47, issue.5, pp.487-491, 1946.

W. H. Bragg and R. Kleeman, XXXIX. On the ? particles of radium, and their loss of range in passing through various atoms and molecules. The London, Edinburgh, and Dublin Philosophical Magazine, Journal of Science, vol.10, issue.57, pp.318-340, 1905.

J. H. Lawrence, Proton irradiation of the pituitary, Cancer, vol.10, issue.4, pp.795-798, 1957.

B. Larsson, L. Leksell, B. Rexed, and P. Sourander, Effect of high energy protons on the spinal cord, Acta radiologica, vol.51, issue.1, pp.52-64, 1959.

B. Larsson, Pre-therapeutic physical experiments with high energy protons, The British journal of radiology, vol.34, issue.399, pp.143-151, 1961.

S. Falkmer, B. Fors, B. Larsson, A. Lindell, J. Naeslund et al., Pilot study on proton irradiation of human carcinoma, Acta Radiologica, vol.58, issue.1, pp.33-51, 1962.

B. Larsson, L. Leksell, and B. Rexed, The use of high energy protons for cerebral surgery in man, Acta Chirurgica Scandinavica, p.125, 1963.

R. N. Kjellberg, W. H. Sweet, W. M. Preston, and A. M. Koehler, The Bragg peak of a proton beam in intracranial therapy of tumors, Transactions of the American Neurological Association, p.87, 1962.

R. N. Kjellberg, A. M. Koehler, W. M. Preston, and W. H. Sweet, Stereotaxic instrument for use with the Bragg peak of a proton beam, Stereotactic and Functional Neurosurgery, vol.22, issue.3-5, pp.183-189, 1962.

A. M. Koehler, R. J. Schneider, and J. M. Sisterson, Flattening of proton dose distributions for large-field radiotherapy, Medical Physics, vol.4, issue.4, pp.297-301, 1977.

E. S. Gragoudas, M. Goitein, L. Verhey, J. Munzenreider, M. Urie et al., Proton beam irradiation of uveal melanomas: results of 5½-year study, Archives of ophthalmology, vol.100, issue.6, pp.928-934, 1982.

R. Wilson, A brief history of the Harvard University cyclotrons, 2017.

M. Jermann, Particle therapy statistics in 2014, International Journal of Particle Therapy, vol.2, issue.1, pp.50-54, 2015.

V. P. Dzhelepov, V. I. Komarov, and O. V. Savchenko, Development of a proton beam synchrocyclotron with energy from 100 to 200MeV for medicobiological research, Meditsinskaia radiologiia, vol.14, issue.4, pp.54-58, 1969.

V. S. Khoroshkov, L. Z. Barabash, A. V. Barkhudarian, L. L. Gol'din, M. F. Lomanov et al., A proton beam accelerator ITEF for radiation therapy, Meditsinskaia radiologiia, vol.14, issue.4, pp.58-62, 1969.

I. V. Chuvilo, L. L. Goldin, V. S. Khoroshkov, S. E. Blokhin, V. M. Breyev et al., ITEP synchrotron proton beam in radiotherapy, International Journal of Radiation Oncology Biology Physics, vol.10, issue.2, pp.185-195, 1984.

T. Kanai, K. Kawachi, Y. Kumamoto, H. Ogawa, T. Yamada et al., Spot scanning system for proton radiotherapy. Medical physics, vol.7, pp.365-369, 1980.

, PTCOG: Particle Therapy Co-Operative Group

W. D. Newhauser and R. Zhang, The physics of proton therapy, Physics in Medicine & Biology, vol.60, issue.8, p.155, 2015.

D. C. Weber, H. Wang, L. Cozzi, G. Dipasquale, H. G. Khan et al., RapidArc, intensity modulated photon and proton techniques for recurrent prostate cancer in previously irradiated patients: a treatment planning comparison study, Radiation Oncology, vol.4, issue.1, p.34, 2009.

D. Georg, J. Hopfgartner, J. Gòra, P. Kuess, G. Kragl et al., Dosimetric considerations to determine the optimal technique for localized prostate cancer among external photon, proton, or carbon-ion therapy and high-dose-rate or low-dose-rate brachytherapy, International Journal of Radiation Oncology Biology Physics, vol.88, issue.3, pp.715-722, 2014.

E. A. Blakely, C. , and P. Y. , Late effects from hadron therapy, Radiotherapy and Oncology, vol.73, pp.134-140, 2004.

B. S. Athar, B. Bednarz, J. Seco, C. Hancox, and H. Paganetti, Comparison of out-of-field photon doses in 6 MV IMRT and neutron doses in proton therapy for adult and pediatric patients, Physics in Medicine & Biology, vol.55, issue.10, p.2879, 2010.

T. I. Yock and N. J. Tarbell, Technology insight: Proton beam radiotherapy for treatment in pediatric brain tumors, Nature Reviews Clinical Oncology, vol.1, issue.2, p.97, 2004.

J. S. Loeffler, D. , and M. , Charged particle therapy-optimization, challenges and future directions, Nature reviews Clinical oncology, vol.10, issue.7, p.411, 2013.

T. A. Van-de-water, A. J. Lomax, H. P. Bijl, M. E. De-jong, C. Schilstra et al., Potential benefits of scanned intensity-modulated proton therapy versus advanced photon therapy with regard to sparing of the salivary glands in oropharyngeal cancer, International Journal of Radiation Oncology* Biology* Physics, vol.79, issue.4, pp.1216-1224, 2011.

A. W. Chan and N. J. Liebsch, Proton radiation therapy for head and neck cancer, Journal of surgical oncology, vol.97, issue.8, pp.697-700, 2008.

J. Lundkvist, M. Ekman, S. R. Ericsson, B. Jönsson, and B. Glimelius, Proton therapy of cancer: potential clinical advantages and costeffectiveness, Acta oncologica, vol.44, issue.8, pp.850-861, 2005.

R. Orecchia, M. Krengli, B. A. Jereczek-fossa, S. Franzetti, and J. P. Gerard, Clinical and research validity of hadrontherapy with ion beams, Critical reviews in oncology/hematology, vol.51, issue.2, pp.81-90, 2004.

M. Ramona, M. Ulrike, J. Robert, P. Richard, V. Christian et al., Epidemiological aspects of hadron therapy: a prospective nationwide study of the Austrian project MedAustron and the Austrian Society of Radiooncology (OEGRO), Radiotherapy and Oncology, vol.73, pp.24-28, 2004.

M. H. Baron, P. Pommier, V. Favrel, G. Truc, J. Balosso et al., A "one-day survey": as a reliable estimation of the potential recruitment for proton-and carbon-ion therapy in France, Radiotherapy and Oncology, vol.73, pp.15-17, 2004.
URL : https://hal.archives-ouvertes.fr/inserm-00388955

M. Fuss, K. Poljanc, D. W. Miller, J. O. Archambeau, J. M. Slater et al., Normal tissue complication probability (NTCP) calculations as a means to compare proton and photon plans and evaluation of clinical appropriateness of calculated values, International journal of cancer, vol.90, issue.6, pp.351-358, 2000.

M. Fuss, E. B. Hug, R. A. Schaefer, M. Nevinny-stickel, D. W. Miller et al., Proton radiation therapy (PRT) for pediatric optic pathway gliomas: comparison with 3D planned conventional photons and a standard photon technique, International Journal of Radiation Oncology Biology Physics, vol.45, issue.5, pp.1117-1126, 1999.

A. Peeters, J. P. Grutters, M. Pijls-johannesma, S. Reimoser, D. De-ruysscher et al., How costly is particle therapy? Cost analysis of external beam radiotherapy with carbon-ions, protons and photons, Radiotherapy and oncology, vol.95, issue.1, pp.45-53, 2010.

M. Lodge, M. Pijls-johannesma, L. Stirk, A. J. Munro, D. De-ruysscher et al., A systematic literature review of the clinical and costeffectiveness of hadron therapy in cancer, Radiotherapy and Oncology, vol.83, issue.2, pp.110-122, 2007.

A. Konski, W. Speier, A. Hanlon, J. R. Beck, and A. Pollack, Is Proton Beam Therapy Cost Effective in the Treatment of Adenocarcinoma of the, Journal of Clinical Oncology, vol.25, issue.24, pp.3603-3608, 2007.

M. Goitein, J. , and M. , The relative costs of proton and X-ray radiation therapy, Clinical Oncology, vol.15, issue.1, pp.37-50, 2003.

, International Commission of Radiation Units. International Commission on Radiation Units and Measurements: Stopping Power and ranges for protons and alpha particles, vol.24, 1976.

M. C. Cantone, M. Ciocca, F. Dionisi, P. Fossati, S. Lorentini et al., Application of failure mode and effects analysis to treatment planning in scanned proton beam radiotherapy, Radiation Oncology, vol.8, issue.1, p.127, 2013.

B. Schaffner, E. Pedroni, and A. Lomax, Dose calculation models for proton treatment planning using a dynamic beam delivery system: an attempt to include density heterogeneity effects in the analytical dose calculation, Physics in Medicine & Biology, vol.44, issue.1, p.27, 1999.

M. Soukup, M. Fippel, A. , and M. , A pencil beam algorithm for intensity modulated proton therapy derived from Monte Carlo simulations, Physics in Medicine & Biology, vol.50, issue.21, p.5089, 2005.

W. Newhauser, J. Fontenot, Y. Zheng, J. Polf, U. Titt et al., Monte Carlo simulations for configuring and testing an analytical proton dose-calculation algorithm, Physics in Medicine & Biology, vol.52, issue.15, p.4569, 2007.

A. J. Lomax, Intensity modulated proton therapy and its sensitivity to treatment uncertainties 1: the potential effects of calculational uncertainties, Physics in Medicine & Biology, vol.53, issue.4, p.1027, 2008.

A. J. Lomax, Intensity modulated proton therapy and its sensitivity to treatment uncertainties 2: the potential effects of inter-fraction and inter-field motions, Physics in Medicine & Biology, vol.53, issue.4, p.1043, 2008.

H. Paganetti, Range uncertainties in proton therapy and the role of Monte Carlo simulations, Physics in Medicine & Biology, vol.57, issue.11, p.99, 2012.

T. T. Böhlen, F. Cerutti, M. P. Chin, A. Fassò, A. Ferrari et al., The FLUKA code: developments and challenges for high energy and medical applications. Nuclear data sheets, vol.120, pp.211-214, 2014.

A. Ferrari, P. R. Sala, A. Fasso, and J. Ranft, FLUKA: A multiparticle transport code, 2005.

S. Agostinelli, J. Allison, K. A. Amako, J. Apostolakis, H. Araujo et al., , 2003.

, GEANT4-a simulation toolkit. Nuclear instruments and methods in physics research section A: Accelerators, vol.506, pp.250-303

J. Allison, K. Amako, J. E. Apostolakis, H. A. Araujo, P. A. Dubois et al., Geant4 developments and applications, IEEE Transactions on nuclear science, vol.53, issue.1, pp.270-278, 2006.
URL : https://hal.archives-ouvertes.fr/in2p3-00069212

H. Iwase, K. Niita, and T. Nakamura, Development of general-purpose particle and heavy ion transport Monte Carlo code, Journal of Nuclear Science and Technology, vol.39, issue.11, pp.1142-1151, 2002.

D. B. Pelowitz, J. W. Durkee, J. S. Elson, M. L. Fensin, J. S. Hendricks et al., , 2011.

L. S. Waters, MCNPX user's manual, 2002.

M. Testa, J. Schümann, H. M. Lu, J. Shin, B. Faddegon et al., Experimental validation of the TOPAS Monte Carlo system for passive scattering proton therapy, Medical physics, issue.12, p.40, 2013.

J. Perl, J. Shin, J. Schümann, B. Faddegon, and H. Paganetti, TOPAS: An innovative proton Monte Carlo platform for research and clinical applications, Medical physics, vol.39, issue.11, pp.6818-6837, 2012.

D. Sarrut, M. Bardiès, N. Boussion, N. Freud, S. Jan et al., A review of the use and potential of the GATE Monte Carlo simulation code for radiation therapy and dosimetry applications, Medical physics, issue.6Part1, p.41, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01015819

S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol et al., GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy, Physics in Medicine & Biology, vol.56, issue.4, p.881, 2011.
URL : https://hal.archives-ouvertes.fr/in2p3-00559709

M. Fippel and M. Soukup, A Monte Carlo dose calculation algorithm for proton therapy, Medical physics, issue.8, pp.2263-2273, 2004.

A. Mairani, T. T. Böhlen, A. Schiavi, T. Tessonnier, S. Molinelli et al., A Monte Carlo-based treatment planning tool for proton therapy, Physics in Medicine & Biology, vol.58, issue.8, p.2471, 2013.

T. T. Böhlen, J. Bauer, M. Dosanjh, A. Ferrari, T. Haberer et al., A Monte Carlo-based treatment-planning tool for ion beam therapy, Journal of radiation research, vol.54, pp.77-81, 2013.

S. Molinelli, A. Mairani, A. Mirandola, G. V. Freixas, T. Tessonnier et al., Dosimetric accuracy assessment of a treatment plan verification system for scanned proton beam radiotherapy: one-year experimental results and Monte Carlo analysis of the involved uncertainties, Physics in Medicine & Biology, vol.58, issue.11, p.3837, 2013.

K. Parodi, A. Mairani, S. Brons, B. G. Hasch, F. Sommerer et al., Monte Carlo simulations to support start-up and treatment planning of scanned proton and carbon ion therapy at a synchrotron-based facility, Physics in Medicine & Biology, vol.57, issue.12, p.3759, 2012.

K. Souris, J. A. Lee, and E. Sterpin, Fast multipurpose Monte Carlo simulation for proton therapy using multi-and many-core CPU architectures, Medical physics, vol.43, issue.4, pp.1700-1712, 2016.

A. Schiavi, M. Senzacqua, S. Pioli, A. Mairani, G. Magro et al., Fred: a GPU-accelerated fastMonte Carlo code for rapid treatment plan recalculation in ion beam therapy, Physics in Medicine & Biology, vol.62, issue.18, p.7482, 2017.

H. Paganetti, H. Jiang, K. Parodi, R. Slopsema, and M. Engelsman, Clinical implementation of full Monte Carlo dose calculation in proton beam therapy, Physics in Medicine & Biology, vol.53, issue.17, p.4825, 2008.

L. Grevillot, , 2011.

, Monte Carlo simulation of active scanning proton therapy system with Gate/Geant4: Towards a better patient dose quality assurance (Doctoral dissertation

G. O. Sawakuchi, X. R. Zhu, F. Poenisch, K. Suzuki, G. Ciangaru et al., Experimental characterization of the low-dose envelope of spot scanning proton beams, Physics in Medicine & Biology, vol.55, issue.12, p.3467, 2010.

, International Commission on Radiation Units and Measurements, 2007.

M. F. Moyers, G. B. Coutrakon, A. Ghebremedhin, K. Shahnazi, P. Koss et al., Calibration of a proton beam energy monitor, Medical physics, vol.34, issue.6Part1, pp.1952-1966, 2007.

, Absorbed Dose Determination in External Beam Radiotherapy: An International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water, International Atomic Energy Agency, 2001.

, Stopping powers and ranges for protons and alpha particles, International Commission on Radiation Units and Measurements, 1994.

, Medical Physics terminologies for parameters associated with dose distributions of light ion beams

F. H. Attix, Introduction to radiological physics and radiation dosimetry, 2008.

, Nuclear Data for Neutron and Proton Radiotherapy and for Radiation Protection, International Commission on Radiation Units and Measurements, vol.63, 2000.

N. Bohr, On the theory of the decrease of velocity of moving electrified particles on passing through matter. The London, Edinburgh, and Dublin Philosophical Magazine, Journal of Science, vol.25, issue.145, pp.10-31, 1913.

, NIST: National Institute of Standards and Technology, pp.2018-2024

H. Bethe, Zur theorie des durchgangs schneller korpuskularstrahlen durch materie, Annalen der Physik, vol.397, issue.3, pp.325-400, 1930.

F. Bloch, Zur bremsung rasch bewegter teilchen beim durchgang durch materie, vol.408, pp.285-320, 1933.

W. H. Barkas, J. N. Dyer, and H. H. Heckman, Resolution of the ?=-mass anomaly, Physical Review Letters, vol.11, issue.1, p.26, 1963.

H. D. Betz, Charge states and charge-changing cross sections of fast heavy ions penetrating through gaseous and solid media, Reviews of Modern Physics, vol.44, issue.3, p.465, 1972.

U. Linz, A. , and J. , What will it take for laser driven proton accelerators to be applied to tumor therapy, Physical Review Special TopicsAccelerators and Beams, vol.10, issue.9, p.94801, 2007.

J. F. Janni, Energy loss, range, path length, time-of-flight, straggling, multiple scattering, and nuclear interaction probability: In two parts. Part 1. For 63 compounds Part 2. For elements 1? Z? 92. Atomic data and nuclear data tables, vol.27, pp.341-529, 1982.

G. Moliere, Theory of the scattering of fast charged particles. 2. Repeated and multiple scattering, Z. Naturforsch, vol.3, pp.78-97, 1948.

B. Gottschalk, A. M. Koehler, R. J. Schneider, J. M. Sisterson, and M. S. Wagner, Multiple Coulomb scattering of 160 MeV protons, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.74, pp.467-490, 1993.

B. Gottschalk, E. W. Cascio, J. Daartz, and M. S. Wagner, On the nuclear halo of a proton pencil beam stopping in water, Physics in Medicine & Biology, vol.60, issue.14, p.5627, 2015.

V. L. Highland, Some practical remarks on multiple scattering, Nuclear Instruments and Methods, vol.129, issue.2, pp.497-499, 1975.

E. Pedroni, S. Scheib, T. Böhringer, A. Coray, M. Grossmann et al., Experimental characterization and physical modelling of the dose distribution of scanned proton pencil beams, Physics in Medicine & Biology, vol.50, issue.3, p.541, 2005.

D. Schardt, T. Elsässer, and D. Schulz-ertner, Heavy-ion tumor therapy: Physical and radiobiological benefits, Reviews of modern physics, vol.82, issue.1, p.383, 2010.

C. Grassberger and H. Paganetti, Elevated LET components in clinical proton beams, Physics in Medicine & Biology, vol.56, issue.20, p.6677, 2011.

, Relative Biological Effectiveness in Ion Beam Therapy, International Atomic Energy Agency, 2008.

P. Andreo, On the clinical spatial resolution achievable with protons and heavier charged particle radiotherapy beams, Physics in Medicine & Biology, vol.54, issue.11, p.205, 2009.

U. Amaldi and G. Kraft, Radiotherapy with beams of carbon ions. Reports on progress in physics, vol.68, p.1861, 2005.

J. E. Coggle and F. Bistolfi, Effetti biologici delle radiazioni. Minerva medica, 1998.

, Recording and Reporting Photon Beam Therapy, International Commission on Radiation Units and Measurements, 1999.

G. W. Barendsen, Responses of cultured cells, tumors, and normal tissues to radiations of different linear energy transfer. Health Research Organization TNO, 1968.

H. Paganetti, Relative biological effectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint, dose, and linear energy transfer, Physics in Medicine & Biology, vol.59, issue.22, p.419, 2014.

, Dose Reporting in Ion Beam Therapy. IAEA TECDOC-1560, International Atomic Energy Agency, 2006.

M. Scholz, A. M. Kellerer, W. Kraft-weyrather, and G. Kraft, Computation of cell survival in heavy ion beams for therapy. Radiation and environmental biophysics, vol.36, pp.59-66, 1997.

T. Friedrich, U. Scholz, T. Elsässer, M. Durante, and M. Scholz, Calculation of the biological effects of ion beams based on the microscopic spatial damage distribution pattern, International journal of radiation biology, vol.88, issue.1-2, pp.103-107, 2012.

T. Elsässer, W. K. Weyrather, T. Friedrich, M. Durante, G. Iancu et al., , 2010.

, Quantification of the relative biological effectiveness for ion beam radiotherapy: direct experimental comparison of proton and carbon ion beams and a novel approach for treatment planning, International Journal of Radiation Oncology Biology Physics, vol.78, issue.4, pp.1177-1183

T. Elsässer and M. Scholz, Cluster effects within the local effect model, Radiation research, vol.167, issue.3, pp.319-329, 2007.

M. Scholz, Effects of ion radiation on cells and tissues, Radiation effects on polymers for biological use, pp.95-155, 2003.

C. P. Karger and P. Peschke, RBE and related modeling in carbon-ion therapy, Physics in Medicine & Biology, vol.63, issue.1, pp.1-02, 2017.

S. M. Vatnitsky, J. V. Siebers, and D. W. Miller, kQ factors for ionization chamber dosimetry in clinical proton beams, Medical physics, vol.23, issue.1, pp.25-31, 1996.

J. Medin, Implementation of water calorimetry in a 180 MeV scanned pulsed proton beam including an experimental determination of kQ for a Farmer chamber, Physics in Medicine & Biology, vol.55, issue.12, p.3287, 2010.

L. V. Spencer and F. H. Attix, A theory of cavity ionization, Radiation Research, vol.3, issue.3, pp.239-254, 1955.

H. Palmans and F. Verhaegen, On the effective point of measurement of cylindrical ionization chambers for proton beams and other heavy charged particle beams, Physics in Medicine & Biology, vol.45, issue.8, p.20, 2000.

M. Stock, P. Georg, R. Mayer, T. T. Böhlen, and S. Vatnitsky, Development of clinical programs for carbon ion beam therapy at MedAustron, International Journal of Particle Therapy, vol.2, issue.3, pp.474-477, 2015.

O. Nairz, M. Winter, P. Heeg, and O. Jäkel, Accuracy of robotic patient positioners used in ion beam therapy, Radiation Oncology, vol.8, issue.1, p.124, 2013.

P. J. Bryant, G. Borri, M. Crescenti, L. Badano, A. T. Maier et al., Proton-Ion Medical Machine Study (PIMMS), vol.2, 2000.

M. Durante and J. S. Loeffler, Charged particles in radiation oncology, Nature reviews Clinical oncology, vol.7, issue.1, p.37, 2010.

M. Stock, D. Georg, A. Ableitinger, A. Zechner, A. Utz et al., The technological basis for adaptive ion beam therapy at MedAustron: Status and outlook, 2017.

S. Giordanengo, M. A. Garella, F. Marchetto, F. Bourhaleb, M. Ciocca et al., The CNAO dose delivery system for modulated scanning ion beam radiotherapy, Medical Physics, vol.42, issue.1, pp.263-275, 2015.

S. Giordanengo, M. Donetti, M. A. Garella, F. Marchetto, G. Alampi et al., Design and characterization of the beam monitor detectors of the Italian National Center of Oncological Hadron-therapy (CNAO). Nuclear Instruments and Methods in, Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.698, pp.202-207, 2013.

L. Grevillot, M. Stock, and S. Vatnitsky, Evaluation of beam delivery and ripple filter design for non-isocentric proton and carbon ion therapy, Physics in Medicine & Biology, vol.60, issue.20, p.7985, 2015.

J. O. Deasy, A proton dose calculation algorithm for conformal therapy simulations based on Moliere's theory of lateral deflections, Medical physics, vol.25, issue.4, pp.476-483, 1998.

B. Clasie, N. Depauw, M. Fransen, C. Gomà, H. R. Panahandeh et al., Golden beam data for proton pencil-beam scanning, Physics in Medicine & Biology, vol.57, issue.5, p.1147, 2012.

M. Hollmark, J. Uhrdin, D. Belki?, I. Gudowska, and A. Brahme, Influence of multiple scattering and energy loss straggling on the absorbed dose distributions of therapeutic light ion beams: I. Analytical pencil beam model, Physics in Medicine & Biology, vol.49, issue.14, p.3247, 2004.

P. L. Petti, Differential-pencil-beam dose calculations for charged particles, Medical physics, vol.19, issue.1, pp.137-149, 1992.

B. Schaffner, Proton dose calculation based on in-air fluence measurements, Physics in Medicine & Biology, vol.53, issue.6, p.1545, 2008.

L. Eyges, Multiple scattering with energy loss, Physical Review, vol.74, issue.10, p.1534, 1948.

J. Saini, D. Maes, A. Egan, S. R. Bowen, S. St-james et al., Dosimetric evaluation of a commercial proton spot scanning Monte-Carlo dose algorithm: comparisons against measurements and simulations, Physics in Medicine & Biology, vol.62, issue.19, p.7659, 2017.

H. Palmans and S. M. Vatnitsky, Beam monitor calibration in scanned light-ion beams, Medical physics, vol.43, issue.11, pp.5835-5847, 2016.

A. Elia, D. Sarrut, A. Carlino, T. T. Bohlen, H. Fuchs et al., A reference Monte Carlo beam model of the MedAustron proton horizontal xed beam line using GATE/Geant4, 2018.

A. Tourovsky, A. J. Lomax, U. Schneider, and E. Pedroni, Monte Carlo dose calculations for spot scanned proton therapy, Physics in Medicine & Biology, vol.50, issue.5, p.971, 2005.

L. Grevillot, D. Bertrand, F. Dessy, N. Freud, and D. Sarrut, GATE as a GEANT4-based Monte Carlo platform for the evaluation of proton pencil beam scanning treatment plans, Physics in Medicine & Biology, vol.57, issue.13, p.4223, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00797063

G. Magro, S. Molinelli, A. Mairani, A. Mirandola, D. Panizza et al., Dosimetric accuracy of a treatment planning system for actively scanned proton beams and small target volumes: Monte Carlo and experimental validation, Physics in Medicine & Biology, vol.60, issue.17, p.6865, 2015.

C. Grassberger, A. Lomax, and H. Paganetti, Characterizing a proton beam scanning system for Monte Carlo dose calculation in patients, Physics in Medicine & Biology, vol.60, issue.2, p.633, 2014.

L. Grevillot, D. Bertrand, F. Dessy, N. Freud, and D. Sarrut, A Monte Carlo pencil beam scanning model for proton treatment plan simulation using GATE/GEANT4, Physics in Medicine & Biology, vol.56, issue.16, p.5203, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00630709

M. Testa, J. Schümann, H. M. Lu, J. Shin, B. Faddegon et al., Experimental validation of the TOPAS Monte Carlo system for passive scattering proton therapy, Medical physics, issue.12, p.40, 2013.

F. Fracchiolla, S. Lorentini, L. Widesott, and M. Schwarz, Characterization and validation of a Monte Carlo code for independent dose calculation in proton therapy treatments with pencil beam scanning, Physics in Medicine & Biology, vol.60, issue.21, p.8601, 2015.

J. Schwaab, S. Brons, J. Fieres, and K. Parodi, Experimental characterization of lateral profiles of scanned proton and carbon ion pencil beams for improved beam models in ion therapy treatment planning, Physics in Medicine & Biology, vol.56, issue.24, p.7813, 2011.

H. Paganetti, , 2006.

, Monte Carlo calculations for absolute dosimetry to determine machine outputs for proton therapy fields, Physics in Medicine & Biology, vol.51, issue.11, p.2801

A. Mirandola, S. Molinelli, G. Vilches-freixas, A. Mairani, E. Gallio et al., Dosimetric commissioning and quality assurance of scanned ion beams at the Italian National Center for Oncological Hadrontherapy, Medical physics, vol.42, issue.9, pp.5287-5300, 2015.

L. Grevillot, M. Stock, H. Palmans, J. Osorio-moreno, V. Letellier et al., Implementation of dosimetry equipment and phantoms at the MedAustron light ion beam therapy facility, Medical physics, vol.45, issue.1, pp.352-369, 2018.

A. Carlino, M. Stock, N. Zagler, M. Marrale, J. Osorio et al., Characterization of PTW-31015 PinPoint ionization chambers in photon and proton beams, Physics in medicine and biology, 2018.

, Python Software Foundation. Python Language Reference

R. Brun and F. Rademakers, ROOT-an object oriented data analysis framework, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.389, issue.1-2, pp.81-86, 1997.

C. Z. Jarlskog and H. Paganetti, Physics settings for using the Geant4 toolkit in proton therapy, IEEE Transactions on nuclear science, vol.55, issue.3, pp.1018-1025, 2008.

D. C. Hall, A. Makarova, H. Paganetti, and B. Gottschalk, Validation of nuclear models in Geant4 using the dose distribution of a 177 MeV proton pencil beam, Physics in Medicine & Biology, vol.61, issue.1, p.1, 2015.

L. Grevillot, T. Frisson, N. Zahra, D. Bertrand, F. Stichelbaut et al., Optimization of GEANT4 settings for proton pencil beam scanning simulations using GATE, Nuclear Instruments and Methods in Physics Research Section B: Beam interactions with materials and atoms, vol.268, pp.3295-3305, 2010.

K. Kurosu, M. Takashina, M. Koizumi, I. J. Das, and V. P. Moskvin, Optimization of GATE and PHITS Monte Carlo code parameters for uniform scanning proton beam based on simulation with FLUKA general-purpose code, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.336, pp.45-54, 2014.

A. Carlino, Implementation of advanced methodologies in the commissioning of a light ion beam therapy facility (Doctoral dissertation, 2017.

A. V. Ivantchenko, V. N. Ivanchenko, J. M. Molina, and S. L. Incerti, Geant4 hadronic physics for space radiation environment, International journal of radiation biology, vol.88, issue.1-2, pp.171-175, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00658736

V. N. Ivanchenko, O. Kadri, M. Maire, and L. Urban, Geant4 models for simulation of multiple scattering, Journal of Physics: Conference Series, vol.219, p.32045, 2010.

L. Urban, Multiple scattering model in Geant4, 2002.

H. Fuchs, S. Vatnitsky, M. Stock, D. Georg, and L. Grevillot, Evaluation of GATE/Geant4 multiple Coulomb scattering algorithms for a 160 MeV proton beam, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.410, pp.122-126, 2017.

, Key data for ionizing-radiation dosimetry: measurement standards and applications, International Commission on Radiation Units and Measurements, 2014.

R. F. Laitano and M. Rosetti, Proton stopping powers averaged over beam energy spectra, Physics in Medicine & Biology, vol.45, issue.10, p.3025, 2000.

C. Gomà, P. Andreo, and J. Sempau, , 2016.

, Monte Carlo calculation of beam quality correction factors in proton beams using detailed simulation of ionization chambers, Physics in Medicine & Biology, issue.6, p.2389

, Prescribing, recording, and reporting photon-beam intensity-modulated radiation therapy (IMRT), International Commission on Radiation Units and Measurements, p.83, 2010.

B. Arjomandy, N. Sahoo, G. Ciangaru, R. Zhu, X. Song et al., Verification of patient-specific dose distributions in proton therapy using a commercial two-dimensional ion chamber array, Medical physics, vol.37, issue.11, pp.5831-5837, 2010.

G. Ciangaru, J. N. Yang, P. J. Oliver, M. Bues, M. Zhu et al., Verification procedure for isocentric alignment of proton beams, Journal of applied clinical medical physics, vol.8, issue.4, pp.65-75, 2007.

S. Safai, S. Lin, and E. Pedroni, Development of an inorganic scintillating mixture for proton beam verication dosimetry, Phys. Med. Biol, vol.49, p.463755, 2004.

L. Zhao and I. J. , Das Gafchromic EBT lm dosimetry in proton beams, Phys. Med. Biol, vol.55, p.291301, 2010.

X. R. Zhu, F. Poenisch, X. Song, J. L. Johnson, G. Ciangaru et al., Patient-specific quality assurance for prostate cancer patients receiving spot scanning proton therapy using single-field uniform dose, International Journal of Radiation Oncology* Biology* Physics, vol.81, issue.2, pp.552-559, 2011.

C. P. Karger, O. Jäkel, G. H. Hartmann, and P. Heeg, A system for three-dimensional dosimetric verification of treatment plans in intensitymodulated radiotherapy with heavy ions, Medical physics, vol.26, issue.10, pp.2125-2132, 1999.

, MP QA Operating Procedure Document: Dosimetrical patient specific plan verification for HBL with protons, Medaustron report, 2018.

, User Manual PinPoint Chambers Type 31014 -0.015 cm³ and Type

U. Schneider, E. Pedroni, and A. Lomax, The calibration of CT Hounsfield units for radiotherapy treatment planning, Physics in Medicine & Biology, vol.41, issue.1, p.111, 1996.

W. Schneider, T. Bortfeld, and W. Schlegel, Correlation between CT numbers and tissue parameters needed for Monte Carlo simulations of clinical dose distributions, Physics in Medicine & Biology, vol.45, issue.2, p.459, 2000.

P. Royston, Approximating the Shapiro-Wilk W-Test for nonnormality, Statistics and Computing, vol.2, issue.3, pp.117-119, 1992.

P. Royston, A toolkit for testing for non-normality in complete and censored samples. The statistician, pp.37-43, 1993.

F. Wilcoxon, Individual comparisons by ranking methods, Biometrics bulletin, vol.1, issue.6, pp.80-83, 1945.

A. F. Resch, A. Elia, H. Fuchs, A. Carlino, H. Palmans et al., Validation of electromagnetic and nuclear scattering models in GATE/Geant4 for proton therapy, 2018.

P. Boisse@insa-lyon,