P. Bille, A survey on tree edit distance and related problems, Theoretical Computer Science, vol.337, issue.1-3, pp.217-239, 2005.
DOI : 10.1016/j.tcs.2004.12.030

S. Ristad and P. Yianilos, Learning string-edit distance, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.20, issue.5, pp.522-532, 1998.
DOI : 10.1109/34.682181

URL : http://arxiv.org/abs/cmp-lg/9610005

J. Oncina and M. Sebban, Learning stochastic edit distance: Application in handwritten character recognition, Pattern Recognition, vol.39, issue.9, 2006.
DOI : 10.1016/j.patcog.2006.03.011

URL : https://hal.archives-ouvertes.fr/hal-00114106

A. Mccallum, K. Bellare, and P. Pereira, A conditional random field for disciminatively-trained finite-state sting edit distance, p.2005, 2005.

R. Durbin, S. Eddy, A. Krogh, and G. Mitchison, Biological sequence analysis, 1998.
DOI : 10.1017/CBO9780511790492

M. Neuhaus and H. Bunke, A probabilistic approach to learning costs for graph edit distance, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004., pp.389-393, 2004.
DOI : 10.1109/ICPR.2004.1334548

K. Zhang and D. Shasha, Simple Fast Algorithms for the Editing Distance between Trees and Related Problems, SIAM Journal on Computing, vol.18, issue.6, pp.1245-1262, 1989.
DOI : 10.1137/0218082

P. Klein, Computing the Edit-Distance Between Unrooted Ordered Trees, Proc. of the 6th European Symposium on Algorithms (ESA), pp.91-102, 1998.
DOI : 10.1007/3-540-68530-8_8

S. Selkow, The tree-to-tree editing problem, Information Processing Letters, vol.6, issue.6, pp.184-186, 1977.
DOI : 10.1016/0020-0190(77)90064-3

G. Bouchard and B. Triggs, The trade-off between generative and discrminative classifiers, In: COMPSTAT, 2004.

A. Dempster, M. Laird, and D. Rubin, Maximum likelihood from incomplete data via the EM algorithm, J. R. Stat. Soc B, issue.39, pp.1-38, 1977.