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Abstract. Many real-world applications such as spell-checking or DNA
analysis use the Levenshtein edit-distance to compute similarities be-
tween strings. In practice, the costs of the primitive edit operations (in-
sertion, deletion and substitution of symbols) are generally hand-tuned.
In this paper, we propose an algorithm to learn these costs. The under-
lying model is a probabilitic transducer, computed by using grammatical
inference techniques, that allows us to learn both the structure and the
probabilities of the model. Beyond the fact that the learned transduc-
ers are neither deterministic nor stochastic in the standard terminology,
they are conditional, thus independant from the distributions of the input
strings. Finally, we show through experiments that our method allows
us to design cost functions that depend on the string context where the
edit operations are used. In other words, we get kinds of context-sensitive
edit distances.

Keywords. Edit Distance, Stochastic Transducers, Discriminative Mod-
els, Grammatical Inference.

1 Introduction

Real world applications such as spell checking, speech recognition, DNA analysis
or plagiarism detection often use the Levenshtein distance, the so-called Edit
Distance (ED) [12], to compute similarities of string pairs. The common feature
of ED-based methods is that they are static, in the sense of using a priori fixed
costs for the primitive edit operations (insertion, deletion, substitution), that
leaves little room for adaptation to the string context. Nevertheless, in many
real domains, the level of an edit cost should be able to depend not only on the
pair of symbols handled but also on the context where the operation occurs. For
instance, in computational biology, a given edit operation involving the same
two symbols can highly depend on its location in the DNA sequence.
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One solution would consist in manually assigning costs to edit operations
that reflect the likelihood of the corresponding transformations. But the setting
up of this strategy is difficult and seems to be not realistic overall for applications
with a low level of expertise. Some recent work tried to overcome the previously
mentioned drawbacks by automatically learning the primitive edit costs, rather
than hand-tuning them for each domain. Several probabilistic models have been
proposed to learn a stochastic ED in the form of stochastic transducers [9, 1, 8],
conditional random fields (CRF) [7], or pair-Hidden Markov Models (pair-HMM)
[5]. These models provide a probability distribution over the edit operations and
thus over the string pairs. The stochastic ED between two sequences can then
be computed from the negative logarithm of the probability of the string pair.

Although these methods have provided some significant improvements on
pattern recognition tasks in comparison with the classic non-learned ED, they
share at least one of the following two drawbacks (sometimes both). The first
one is a statistical bias of the inferred model. Actually, the majority of these
approaches aim at learning a generative model rather than a discriminative clas-
sifier [2]. In other words, they learn a joint probability distribution p(x, y) over
the string pairs (x, y), so the resulting conditional density p(y|x), required in
classification tasks, is a biased classifier that depends on the input distribution
p(x). A solution, as proposed in [7, 8], consists in directly learning a conditional
distribution, called a discriminative classifier.

The second drawback is a limitation on the expressive power of the model.
Actually, the structure of the learned model (i.e. the number of states in the
transducer or in the CRF or in the pair-HMM) is always a priori fixed in the
proposed approaches. The goal is to learn the parameters (the edit costs) assum-
ing that the fixed structure is able to capture the most important configurations
which can arise from the alignment of two sequences. Since determining such a
structure depends on the domain, this often constitutes a tricky task that can
result in a bad adaptation of the model to the string context.

In this paper, we propose to take into account both these problems, by learn-
ing not only the structure but also the parameters of a so-called conditional edit
transducer. The motivations that justify the learning of such a transducer are
the following. First, we think that an efficient way to model a stochastic ED
actually consists in viewing it as a stochastic transduction between the input X

and output Y alphabets [8, 9]. In other words, it means that the relation consti-
tuted by a set of (input,output) strings can be compiled in the form of a 2-tape
automaton, called a stochastic finite-state transducer. The interpretation of the
ED as a stochastic transduction naturally leads to two possible string distances
[9]: the first one describes the most likely transduction between the two strings,
while the second is defined by aggregating all transductions between them. In
this paper, we focus on the first stochastic distance, a so-called Viterbi Edit Dis-
tance [9]. We motivate this choice by the fact that we will use an adaptation of
the well-known Viterbi algorithm for learning the structure and the parameters
of the conditional edit transducer.
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Actually, stochastic transducers suffer from the lack of training algorithms
[6] which generally only learn the parameters of an imposed structure, using the
Expectation Maximization algorithm (EM) [4]. We claim in this paper that this
drawback can be efficiently overcome using grammatical inference algorithms,
that constitutes the second motivation of our work. Basically, a transduction
between two strings x ∈ X∗ and y ∈ Y ∗, in the specific domain of the ED,
can be rewritten using an adapted Viterbi algorithm in the form of an optimal
sequence of edit operations z = z1...zn, zi ∈ (X∪{λ})×(Y ∪{λ})\{(λ, λ)} (where
λ is the empty string). Thus, we can exploit grammatical inference algorithms for
learning over this new alphabet the structure of the model (and its parameters)
in the form of a probabilistic finite state automaton.

The rest of this paper is organized as follows. After some notations and
definitions in Section 2 and 3, we propose an adaptive approach for learning a
conditional edit transducer. This learning requires to find an optimal alignment
of string pairs in the form of a set of edit operations (Section 4). From this new
set of sequences built on the alphabet of edit operations, we infer a probabilistic
automaton with Alergia [3]. To learn a discriminative model, the automaton
is corrected to satisfy constraints of conditional distribution (Section 5). The
conditional edit transducer is then deduced from the automaton by splitting
each transition according to the input and output alphabets. In Section 6, we
carry out several series of experiments showing the behavior of our learned ED
in a comparative study.

2 On Edit Distances

An alphabet X is a finite nonempty set of symbols called letters. A string x over
X is a finite sequence x = a1a2 . . . an of letters. Let |x| denote the length of x, λ

the empty string and X∗ the set of all strings. In the sequel, we will use two (non
necessarily) distinct alphabets X and Y whose respective strings will generally
be indicated by x = a1a2 . . . an and y = b1b2 . . . bm, for sake of simplicity.

Let us recall that the edit distance is the smallest number of substitutions,
insertions and deletions required to transform a string x into another y. More
formally, let Es = X × Y be the set of substitutions, Ei = {λ} × Y the set of
insertions, Ed = X × {λ} the set of deletions and Z = Es ∪ Ei ∪ Ed the set of
all edit operations: Z = (X ∪ {λ})× (Y ∪ {λ}) \ {(λ, λ)}. An element (a, b) ∈ Z

will be denoted (a : b). Let c : Z → R
+ be a fixed primitive cost function that

assigns a non negative weight to each edit operation. The edit distance d(x, y)
between two strings x ∈ X∗ and y ∈ Y ∗ is recursively defined as follows:

d(x, y) = min















0 if x = λ and y = λ

c(a : b) + d(x′, y′) if x = ax′ and y = by′

c(a : λ) + d(x′, y) if x = ax′

c(λ : b) + d(x, y′) if y = by′.

The edit distance can also be defined through the notion of alignment. Given
two strings x ∈ X∗ and y ∈ Y ∗, an alignment between x and y is a sequence
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of edit operations, thus a string z = (u1 : v1) . . . (up : vp) ∈ Z∗, such that (1)
ui ∈ X ∪ {λ} and vi ∈ Y ∪ {λ} and (ui : vi) 6= (λ : λ) for all i ∈ 1..p and (2)
x = u1u2 . . . up and y = v1v2 . . . vp. Let L(x, y) denote the set of all alignments
between x and y. Computing d(x, y) consists in exhibiting an alignment of min-
imum cost between x and y: d(x, y) = min{z∈L(x,y):z=z1...zp} c(z1) + · · · + c(zp).
For instance, assuming that X = Y = {a, b} and c(ai : bj) = 1 if ai 6= bj

and 0 otherwise, we get d(aba, bab) = 2 with (a : λ)(b : b)(a : a)(λ : b) or
(λ : b)(a : a)(b : b)(a : λ) as minimal alignments.

Notice that both d(x, y) and the alignments of minimum cost between x

and y can be computed in O(|x| · |y|) time using dynamic programming tech-
niques [12]. However, faced with practical situations, the problem is generally
not to efficiently compute the edit distance itself but rather to find a relevant
primitive cost function able to capture the most important configurations which
can arise from the alignments of two sequences. As we said in introduction, im-
posing a unique cost for a substitution of two letters, whatever they are, and not
taking into account the location where this edit operation occurs in the align-
ment (that we call the string context), is not relevant for dealing with complex
problems. We propose in the following to learn a suited probabilistic model,
called a conditional edit-transducer, to take into account this string context.

3 On Conditional Edit-Transducers

Roughly speaking, a standard transducer is a finite state machine that takes
strings from an input alphabet X and rewrites them into strings of an output
alphabet Y . In the context of edit distance, every alignment between x ∈ X∗

and y ∈ Y ∗ can be viewed as a rewrite derivation of x into y using the edit
operations. So a finite state machine that would achieve this transduction is a
special transducer, called an edit transducer, whose transitions are labelled from
the unique alphabet Z of edit operations.

Definition 1. A finite-state edit-transducer (fset) is a 5-tuple A = 〈Q, Z, i, F, T 〉
such that Q is a finite set of states, Z = (X ∪ {λ}) × (Y ∪ {λ}) \ {(λ, λ)}
the alphabet of edit operations, i ∈ Q the initial state and F : Q → [0, 1]
(resp., T : Q × Z × Q → [0, 1]) a function that assigns a weight to every
state (resp., transition). We also assume the following Determinism Condition:
∀p ∈ Q, ∀(a : b) ∈ Z, Card ({q : T (p, (a : b), q) > 0}) ≤ 1.

A state is final iff F (p) > 0. Moreover, we will never consider the transitions
(p, (a : b), q) whose weights T (p, (a : b), q) are null since they are not useful from
a computational point of view. Indeed, computing the weight of an alignment
z = z1 . . . zn ∈ Z∗ w.r.t. a fset A = 〈Q, Z, i, F, T 〉, denoted P (z|A), consists in
finding a sequence of transitions (i, z1, p1)(p1, z2, p2) . . . (pn−1, zn, pn) that starts
from the initial state and is labeled with the letters of z. Due to the Determinism
Condition, at most one such a path exists in A and then, the weight is: P (z|A) =
T (i, z1, p1) × T (p1, z2, p2) × · · · × T (pn−1, zn, pn) × F (pn).

Since we aim here at learning a discriminative model, let us now define a
conditional fset:



Learning Conditional Transducers 5

Definition 2. A conditional finite-state edit-transducer (cfset) is a fset C =
〈Q, Z, i, F, T 〉, whose transitions are written (b|a) rather than (a : b) ∈ Z, such
that, ∀p ∈ Q, ∀a ∈ X,

F (p) +
∑

b∈Y,q∈Q

T (p, (b|λ), q) = 1, (1)

∑

b∈Y,q∈Q

T (p, (b|a), q) +
∑

q∈Q

T (p, (λ|a), q) +
∑

b∈Y,q∈Q

T (p, (b|λ), q) = 1. (2)

An example of cfset is given in Fig.1(a). Basically, a cfset C is not a
dpfa [11] over Z∗ since F (p) +

∑

(b|a)∈Z,q∈Q T (p, (b|a), q) 6= 1 in general. How-

ever, by using Constraints (1) and (2), we can show that for every fixed input
string x ∈ X∗, P (y|C, x) =

∑

z∈L(x,y) P (z|C) defines a distribution over Y ∗:
∑

y∈Y ∗ P (y|C, x) = 1, that is the reason why we speak of conditional fsets. A
formal proof of this property, in the case of a cfset with only one state, can be
found in [8]. Below, we just give a hint of the general case on an example.

Let us fix x = aa and consider the cfset C of Fig.1(a). C can be used to
produce strings of Y ∗ incrementally by following its transitions while consuming
the letters of x. For instance, starting from the initial state 1, there are 3 cases:
Either, one can produce a b (with a probability of 0.3) from nothing (insertion)
by following the transition (1, (b|λ), 2), and must then produce a string from
state 2, by remembering that no letter of x was consumed. Or, one can make a
substitution of an a by a b (with a probability of 0.5), by following the transition
(1, (b|a), 1), and must then produce a string from state 1, by remembering that
one a of x was consumed, so that only one a remains in the input. Or, one can
delete an a (with a probability of 0.2) in the input without producing anything
(deletion), by following the transition (1, (λ|a), 1), and must then produce a
string from state 1 and only one a in input. When all the letters of the input
string are consumed, no more substitution or deletion can be done, whatever
the state. So one can only make last insertions before stopping. For instance,
directed by x = aa and C, the string bbbb can be produced by the following path:
(1, (b|a), 1)(1, (b|λ), 2)(2, (b|a), 1)(1, (b|λ), 2).

More generally, we can build the automaton P that generates all the strings of
Y ∗ following the transitions of C while consuming the letters of x (see Fig.1(b)).
The states are pairs of the form 〈k, α〉 where k ∈ {1, 2} is a state of C and α is a
prefix of x = aa corresponding to the beginning of x that is already consumed,
i.e., α ∈ {λ, a, aa}. The initial state is 〈1, λ〉 since 1 is the initial state of C and
no letter of x is initially read. A state 〈k, α〉 is final iff (1) k is a final state in
C and (2) all the letters of x have been consumed: α = x = aa. The transitions
are of the form (〈k, α〉, (bj |ai), 〈l, β〉) and they appear iff (1) (k, (bj |ai), l) is a
transition in C and (2) β = α.ai, that is to say, β = α in the case of a insertion
(bj |ai) = (b|λ) and β = α.a in the case of a deletion (bj |ai) = (λ|a) or a
substitution (bj |ai) = (b|a). Finally, the transitions and the final states come
with the probabilities that are assigned by C.

It is now clear that if we want P to generate a distribution over Y ∗, then P
must be a pfa [11], i.e., for every state, the probability of the outgoing transitions
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1(0.7) 2(0.4)
(b|a)(0.2)

(b|λ)(0.3)

(b|a)(0.5) (b|λ)(0.6)

(λ|a)(0.2)(λ|a)(0.2)

〈1, λ〉(0) 〈1, a〉(0)
(λ|a)(0.2)

(b|a)(0.5)

(λ|a)(0.2)

(b|a)(0.5)

〈2, λ〉(0) 〈2, a〉(0)
(λ|a)(0.2) (λ|a)(0.2)

(b|λ)(0.6) (b|λ)(0.6)

(b|a)(0.2) (b|a)(0.2)

(b|λ)(0.3) (b|λ)(0.3) (b|λ)(0.3)

〈2, aa〉(0.4)

〈1, aa〉(0.7)

(b|λ)(0.6)

(a)

(b)

Fig. 1. (a) The cfset C. (b) The probabilistic automaton P modeling the distribution
over Y ∗ conditionally to C and the input string x = aa.

plus the probability of this state to be final must be 1. This is exactly the
statements of Constraints (1) and (2). Indeed, Constraint (1) concerns the case
where all the letters in the input string x are consumed, thus tackles the final
states of P ; the generation of the output string can only be done by using
insertions, before stopping. Constraint (2) concerns the case where not all the
letters in the input string x are consumed yet, thus tackles the non final states
of P ; all the edit operations can be used to generate the output string, but this
generation is forbidden to stop (since some letters of x remains to be consumed).
Hence, Constraints (1) and (2) insure that for every fixed input string x, the
construction of P yields a pfa, that brings:

∑

y∈Y ∗ P (y|C, x) = 1.

At last but not least, by using the same terminology as that of [9], two
edit distances can be defined from every cfset C, the stochastic edit distance:

ds
C(y|x) = − log P (y|C, x) = − log

(

∑

z∈L(x,y) P (z|C)
)

and the Viterbi edit dis-

tance: dv
C(y|x) = − log

(

maxz∈L(x,y) P (z|C)
)

. We will only consider the latter
in the rest of the paper. Indeed, on the one hand, we propose in Section 4 an
efficient algorithm that allows us to compute the Viterbi edit distance. On the
other hand, we will need this algorithm to develop, in Section 5, a method to
learn the structure and the parameters of a cfset that maximizes the likelihood
of a learning sample. So studying only the Viterbi edit distance allows us to kill
two birds with one stone.

4 Computing the Viterbi Edit Distance from a CFSET

Given two strings x ∈ X∗ and y ∈ Y ∗, a cfset provides several possible align-
ments between x and y. For instance, if we consider that of Fig.1(a), then
the strings x = aa and y = bbb may be aligned by z1 = (b|a)(b|a)(b|λ) or
z2 = (b|λ)(b|a)(b|λ)(λ|a). Nevertheless, as P (z1|C) = 0.5× 0.5× 0.3× 0.4 = 0.03
and P (z2|C) = 0.3 × 0.2 × 0.3 × 0.2 × 0.4 = 0.00144, we deduce that z1 may be
the optimal alignment between x and y, unless there exists another alignment
of higher probability, that is not the case of z2.
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Algorithm 1: Probability of an optimal alignment between x and y

Input: Two strings x = a1 . . . an ∈ X∗ and y = b1 . . . bm ∈ Y ∗ and a cfset

C = 〈Q,Z, 1, F, T 〉 whose states are Q = {1, . . . , |Q|} and 1 is initial.

Output: Maximum probability of every alignment between x and y w.r.t. C.

M [0][0][1] ← 1;
for s = 2 to |Q| do

M [0][0][s] ← 0;

for i = 1 to n do

for s = 1 to |Q| do

M [i][0][s] ← maxt∈Q M [i− 1][0][t] × T (t, (λ|ai), s);

for j = 1 to m do

for s = 1 to |Q| do

M [0][j][s] ← maxt∈Q M [0][j − 1][t]× T (t, (bj |λ), s);

for i = 1 to n do

for j = 1 to m do

for s = 1 to |Q| do

mdeletion ← maxt∈Q M [i− 1][j][t] × T (t, (λ|ai), s);
minsertion ← maxt∈Q M [i][j − 1][t]× T (t, (bj |λ), s);
msubstitution ← maxt∈Q M [i− 1][j − 1][t] × T (t, (bj |ai), s);
M [i][j][s] ← max(mdeletion, minsertion, msubstitution);

return maxs∈Q M [n][m][s] × F (s)

Algo.1 allows us to compute the probability of an optimal alignment between
two strings x = a1 . . . an and y = b1 . . . bm w.r.t. a cfset C = 〈Q, Z, 1, F, T 〉 by
dynamic programming. It uses a 3-dimension matrix M to store the probabil-
ities according to (1) input and output strings (that is similar to the standard
edit distance) and (2) the state in progress (that is new). More precisely, M ’s
dimensions are (0..|x|)× (0..|y|)× (1..|Q|) and M [i][j][s] contains the probability
of an optimal alignment, that reaches the state s, between the prefix a1 . . . ai of
x and the prefix b1 . . . bj of y.

In Fig.2, we show an example of execution when x = aa and y = bbb and the
cfset C is that of Fig.1(a). Our algorithm fills up M , cell after cell. Let us focus
on the computation of M [2][1][1] (whose result, 0.1, is underlined in Fig.2). This
cell must contain the maximum probability, according to C, to reach state 1 after
having consumed aa in input and produced b in output. Several possibilities can
lead to this situation. (1) One can reach state 1 by making a deletion of an a

in input, starting from a cell, in state 1 or 2, where a had been consumed in
input and b produced in output, thus from the cells M [1][1][1] or M [1][1][2]. By
Algo.1, we get:

mdeletion = max
t∈Q

M [1][1][t] × T (t, (λ|a), 1) = 0.1

(2) One can reach state 1 by making an insertion of a b in output, starting from
a cell where aa had been consumed in input and no b produced in output, thus
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0.03

0.060.5

bb bbbbλ

a

aa

λ

0.036

0

0.25

00

0.04

0.2

1

0.075

0.150.06

bb bbbbλ

a

aa

λ

0.09

0.108

0.03

0.180.3

0.0120

0

0

state 1 state 2

0.021

0.1

i

j

0.030

Fig. 2. Computation of dv
C(y|x) when x = aa, y = bbb w.r.t. the cfset C of Fig.1(a).

Each cell M [i][j][s] contains the probability of an optimal alignment, that reaches the
state s, between the prefix a1 . . . ai of x and the prefix b1 . . . bj of y. The arrows are
useful to re-construct all the possible alignments between x and y. Both cells out of
the arrays contain the probabilities of such alignments. As 0.030 > 0.021, we deduce
that dv

C(bbb|aa) = − log 0.03 ' 1.52 thanks to the optimal alignment (b|a)(b|a)(b|λ).

from the cells M [2][0][1] or M [2][0][2]. By Algo.1, we get:

minsertion = max
t∈Q

M [2][0][t]× T (t, (b|λ), 1) = 0.

(3) One can reach state 1 by making the substitution of a b by an a, starting
from a cell where a had been consumed in input and λ produced in output, thus
from the cells M [1][0][1] and M [1][0][2]. By Algo.1, we get:

msubstitution = max
t∈Q

M [1][0][t] × T (t, (b|a), 1) = 0.1

Therefore, M [2][1][1] = 0.1. Moreover, this score is achieved after either a dele-
tion (λ|a) from M [1][1][1] or a substitution (b|a) from M [1][0][0], what we indi-
cate in Fig.2 with the dotted arrows that point to the cell M [2][1][1].

At the end of the loops, all the letters of x are consumed and all those of y

are produced. So Algo.1 returns:

max
s∈Q

M [2][3][s] × F (s) = max(M [2][3][1] × F (1), M [2][3][2]× F (2)) = 0.03.

So dv
C(bbb|aa) = − log 0.03 ' 1.52. Moreover, since we have stored the best edit

operations in M , we deduce that only one alignment is optimal: (b|a)(b|a)(b|λ).

5 Learning an Optimal CFEST

The second task we have to tackle concerns the learning of the cfset. As we
said in introduction, stochastic transducers suffer from the lack of learning al-
gorithm. The main reason comes from the fact that stochastic transducers are
not deterministic with respect to the input strings. We are going to show in
this section that the specific context of learning stochastic edit distance leaves
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room for learning not only the parameters but also the structure of a cfset.
The strategy of our iterative algorithm is based on the following remarks.

By Def.2, an edit transducer over X∗×Y ∗ is a kind of probabilistic automaton
over Z∗. So our point is that learning a cfset ultimately returns to the problem
of learning a pfa over Z∗. Indeed, if we can replace each string pair (x, y) of
the learning sample by a sequence z of edit operations corresponding to the
most probable alignment between x and y, then we will be able to learn a dpfa

modeling the Viterbi edit distance with usual grammatical inference algorithms
(such as alergia [3] or mdi [10]). Fortunately, Algo.1 can provide us with such
optimal alignments. However, learning a probabilistic model in the form of a
dpfa from the alignments will provide us with a generative model, that is to
say, a joint distribution over X∗ ×Y ∗. In order to learn a discriminative model,
we have to re-normalize the current distribution at each iteration.

Algorithm 2: Learning the optimal cfset

Input: A sample LS = {(xk, yk) : xk ∈ X∗, yk ∈ Y ∗, k ∈ 1..n} of string pairs.

Output: A cfset C.

C ← a random cfset;
repeat

let zk be the most probable alignment of xk and yk w.r.t. C for all k ∈ 1..n;
A ← alergia({z1, . . . , zn});
C ← normalization(A, {γ(p, z, q) : p, q ∈ Q, z ∈ Z ∪ {(λ : λ)});

until
`
Pn

k=1 dv
C(yk|xk)

´

does not decrease anymore;
return A;

The pseudo-code of our learning algorithm is presented in Algo.2. We initial-
ize our model to a random cfset. Then, we run the following iterative estimation
procedure. We use Algo.1 and the current cfset for assigning the most proba-
ble alignment zk to each string pair (xk, yk) ∈ LS. Then, we run alergia for
learning a dpfa over Z∗. Once the learning is achieved, we re-normalize the joint
distribution described by this generative model to fulfill Constraints (1) and (2)
of Def.2 and get a cfset. The algorithm loops until the Viterbi edit distances
computed on the learning sample does not decrease (significantly) anymore. This
stopping criterium is equivalent to maximize the likelihood (

∏n

k=1 P (yk|C, xk))
over LS, due to the definition of the distance.

To achieve the normalization, we must know the number of times each tran-
sition (p, z, q) of the dpfa A has been used by the learning sequences. These
values, that are denoted γ(p, z, q), are either directly returned by the inference
algorithm (that is the case of alergia), or must be computed by parsing again
the learning sample. By convention, γ(p, (λ : λ), p) denotes the number of times
the parsing of any learning string ends in the state p. Once the frequencies
γ(p, z, q) are known, we can re-normalize each probability T (p, z, q) of A that is
the aim of Algo.3.
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Algorithm 3: Normalization fulfilling Constraints (1) and (2)

Input: A dpfa A = 〈Q,Z, i, F, T 〉 with the set of frequencies γ(p, z, q).

Output: The corresponding cfset after normalization.

for each p ∈ Q do

Np ←
P

q∈Q

P

z∈Z∪{(λ:λ)} γ(p, z, q);

Np(λ)←
P

q∈Q

P

bj∈Y
γ(p, (λ : bj), q);

Np(ai)←
P

q∈Q

P

bj∈Y ∪{λ} γ(p, (ai : bj), q),∀ai ∈ X;

δp ← 1− (Np(λ)/Np);
for all ai ∈ X, bj ∈ Y, q ∈ Q do

T (p, (bj |λ), q)← γ(p, (λ : bj), q)/Np;
T (p, (λ|ai), q)← γ(p, (ai : λ), q)× δp/Np(ai);
T (p, (bj |ai), q)← γ(p, (ai : bj), q)× δp/Np(ai);

F (p)← δp;

return A;

It is easy to check that this algorithm is sound: it suffices to verify that
Constraints (1) and (2) are satisfied by all the states after normalization. This
proof is presented in detail in [8] in the case of a cfset with only state. It
basically also applies to the case of several states since only local information
to the states has to be considered, and no information concerning the relations
between the states. Notice also that this normalization was proved to be optimal
in the framework of an EM procedure [8].

6 Experiments

6.1 Application in Pattern Recognition on the NIST Database

To assess the performance of our algorithm on a pattern recognition task, we
run it on the real world problem of handwritten digit classification. To achieve
this task, we used a subset of the well-known NIST Database of the National
Institute of Standards and Technology. The digits of this database are described
in the form of 128 × 128 bitmap images written by 100 different writers. In
our experimental setup, for simplifying our process, we reduced the size of the
bitmaps to 16 × 16 images.

Then, we used a growing number of these digits as learning sample LS, and
we kept 1,000 digits in a test sample TS. Since stochastic transducers handle
strings, we encoded each digit in an octal form, according to a feature extraction
strategy consisting in using Freeman codes for transforming the original vector
in an octal string. Fig.3 describes the strategy from a sample of the class “9”.

For learning our cfset, we need a learning set of string pairs. We follow
the strategy proposed in [9] consisting in building pairs of “similar” strings that
describe the possible distortions between instances of each class (0 . . . 9). It is
possible to automatically build such pairs of (input,output) strings, where an
input is a learning string of LS, and the output is a prototype of the input.
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Fig. 3. Example of string coding character. Starting from the next found pixel (scan-
ning the digit left-to-right from the top), the coding algorithm builds a string with
absolute direction of the next pixel in the border.

To achieve this task, we used as prototype the corresponding 1-nearest-neighbor
in LS (using the classic edit distance with the same edit cost for an insertion,
deletion or a substitution) of each input.

Note that we could have used other ways to construct string pairs. A solution
would be to generate all pairs in the same class. Beyond large complexity costs,
this strategy would not be relevant in such a digit recognition task. Actually,
the classes of digits are intrinsically multimodal. For example, a zero can be
written either with an open loop or a closed one. In this case, the string that
represents an “open” zero cannot be considered as a distortion of a “closed”
zero, but rather as a different manner (a sort of sub-class) to design this digit.
Therefore, a nearest-neighbor based strategy seems to be much more relevant.

We aim at showing with this series of experiments that learning the primitive
edit costs of an edit distance in the form of a cfset is more relevant than
imposing these costs in advance. Thus, we will compare our approach with the
classic edit distance. The experimental setup is the following: (1) Each set i of
digits (i = 0, .., 9) is divided in 2 parts: a learning set LSi and a test set TSi. (2)
From each LSi, we build a set of string pairs PSi in the form of (x, NN(x)), ∀x ∈
LSi, where NN(x) = argminy∈LSi−{x} d(x, y) (d is the classic edit distance). (3)
We learn a cfset C from

⋃

i PSi with our approach. (4) We classify each test
digit x′ ∈

⋃

i TSi by (a) the class i of the learning string y ∈
⋃

i LSi minimizing
dv
C(y|x′) and (b) the class i of its nearest-neighbor NN(x′) ∈

⋃

i LSi.

Using the previous experimental setup, we can then compare the two ap-
proaches under exactly the same conditions. In order to assess each algorithm in
different configurations, the number of learning strings varied from 50 (5 for each
class of digits) to 500 (50 for each class), with a step of 50 strings per class. The
test accuracy was computed with a test set containing always 1,000 strings (i.e.
|
⋃

i TSi| = 1, 000). The chart of Fig.4(a) shows the results of our experiments
on the NIST database. As already shown in [8], learning an ED in the form of
a conditional edit transducer is clearly relevant to achieve a pattern recognition
task. Whatever the size of the learning set, the error rate obtained using a classic
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edit distance is always higher than that obtained by using a cfset. Note that
even if theoretically, we expect the two methods to converge to the same rate
when |LS| → ∞, it means that our method needs less learning examples to reach
the same error rate.
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Fig. 4. 4(a)Results on the NIST database. 4(b) Comparison between memoryless cf-

sets and cfsets whose structure was learned.

6.2 Results on an Artificial Database

In this second series of experiments, we aim at showing the advantage of learning
the parameters and the structure of a conditional tranducer with respect to other
approaches that fix the structure. To this purpose, we focus on the algorithm by
Oncina and Sebban that learns conditional memoryless edit-tranducers, that is to
say, cfsets with only one state. We use a random fset with 5 states whose input
and output alphabets are X = Y = {a, b, c, d}. Thus, every state has 24 outgoing
transitions, labeled by the edit operations in Z = (X∪{λ})×(Y ∪{λ})\{(λ, λ)}.
Then we use this fset to generate 1,000 strings over Z∗, that allow us to deduce
1000 string pairs over X∗ × Y ∗. Half of them are used by both the algorithms
to learn: the learning sample varies from 100 to 500 strings, with a step of 100
strings. The 500 other strings constitute the test set (TS). In order to measure
the performance of both methods, we compute

∑

(x,y)∈TS dv
C(y|x). The less this

measure is, the best the cfset is.

Fig.4(b) shows our results. From this histogram, we observe that a memo-
ryless cfset is systematically less powerfull than a cfset whose structure was
learned. Notice that the best results were obtained with 300 and 500 learning
examples by transducers that had exactly 5 states, so that were relatively close
to the target generating model. This result confirms that our method is able to
capture the sensitivity of the edit costs to the string context, that is obviously
not the case of a memoryless transducer with fixed costs.
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7 Conclusion

In this paper, we propose a new algorithm to learn the cost function of a stochas-
tic edit distance. Our method relies on conditional edit transducers whose pa-
rameters and structure are learned, thanks to grammatical inference techniques.
Those transducers inherit all the advantages of conditional models described by
Oncina and Sebban in [8]. Moreover, our experiments show that learning the
structure allows us to overcome the memoryless transducers, since many-states
transducers model complex edit cost functions that take into account the string-
context where they are used.
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