Heterogeneous Multidimensional Data Deblurring

Abstract : We present a new scheme for deconvolution of heterogeneous multidimensional data (\eg spatio-temporal or spatio-spectral). It is derived, in a very general way, following an inverse problem approach. This method exploits the continuity of both object and PSF along the different dimensions to elaborate separable constraints. This improves the effectiveness and the robustness of the deconvolution technique. We demonstrate these improvements by processing real X-ray video sequences $(x,y,t)$ and astronomical multi-spectral images $(x,y,\lambda)$.
Complete list of metadatas

Cited literature [10 references]  Display  Hide  Download

https://hal-ujm.archives-ouvertes.fr/ujm-00293660
Contributor : Ferréol Soulez <>
Submitted on : Monday, July 7, 2008 - 11:36:39 AM
Last modification on : Friday, April 5, 2019 - 8:04:54 PM
Long-term archiving on : Monday, October 1, 2012 - 10:51:15 AM

File

Soulez_EUSIPCO.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : ujm-00293660, version 1

Citation

Ferréol Soulez, Éric Thiébaut, Alain Gressard, Raphaël Dauphin, Sébastien Bongard. Heterogeneous Multidimensional Data Deblurring. 16th European Signal Processing Conference (EUSIPCO 2008), Aug 2008, Lausanne, Switzerland. pp.0. ⟨ujm-00293660⟩

Share

Metrics

Record views

333

Files downloads

199