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ABSTRACT: In-line holography is a 3D imaging technique which has been used for many years,
especially in experimental fluid mechanics for the 3D localization and sizing of micro-particles
from the acquisition of a single 2D image (hologram). This technique is easily usable in an
industrial environment thanks to its simple setup.
We have recently presented an algorithm of hologram analysis based on an “inverse problem”
approach. This method find the best model which can explain the hologram and this is realized
iteratively by removing at each step the contribution of thedetected particle. This method can
overcome some limitations of classical approach: like the enlargement of the accessible studied
field.
Nevertheless, some questions remain on the limitations of the method. We propose in this paper
an analysis of the evolution of the signal to noise ratio to clarify the limitations like the size of the
studied field, the effect of the cleaning of already detectedparticles during the process and the
influence of the noise generated by the other particles.
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1 Introduction

In-line holography is a 3D imaging technique which has been used during many years, especially
in experimental fluid mechanics [1, 2]. In particular, to return the 3D localization and sizing of
small objects from the acquisition of a single 2D image (hologram). The digital version of this
technique uses a direct recording on a sensor and a digital processing of holograms without any
optical reconstruction [3, 4]. Thanks to the simple experimental setup and the easy operating, the
technique is usable in a real industrial environment.

Numerous techniques have been developed to analyze micro-particle holograms [3, 4]. They are
mostly based on digital reconstruction by the simulation ofhologram diffraction. These methods
are often limited to low concentrated holograms due to the intrinsic speckle noise which is a major
problem in in-line holography [5, 6]. Some techniques have been developed to reduce it, like off-axis
or in-line recording and off-axis viewing technique [7, 8, 9, 10, 11]. These techniques overcome some
problems like speckle noise but require a more complex setup.

We recently proposed a new approach for the hologram processing [12, 13]. This approach, based
on an “inverse problem” formulation, consists in searchingfor the parameters of localization and size
of each particle by minimizing the difference between the recorded hologram and the model of this
hologram. This minimization is made iteratively by lookingfor, at each iteration, the parameters
of the most likely particle and then subtracting the contribution of this particle from the initial data
(cleaning). The parameters of the particle are determined in two steps: an extensive search over a
given sampling of the parameter space, followed by a local refinement step performed by non-linear
optimization.

This approach was tested on both synthetic and real holograms. The obtained results showed an
improvement of the accuracy of the particles localization and an increase in the accessible field of
view beyond the size of the sensor. A study of some benefits of this approach have already been
realized [14].

Nevertheless, a lot of questions about this algorithm had not yet been studied. In particular:

• the limit size of the studied field
• the benefit of the cleaning step[14]
• the influence of the noise and of the other particles during the optimization step
• the influence of experimental parameters.

The present article proposes a detailed study of the behavior of the algorithm. For that purpose, we
define a signal to noise ratio (SNR) adapted to the algorithm and we propose a study of its evolution
during iterations of the algorithm for different levels of background noise.

In section 2 we recall the principle of the processing algorithm based on an “inverse problem”
approach. Then we propose, in section 3, a definition of the signal to noise ratio for this approach and
describe the method to calculate it. Then we study, in section 4 the evolution of the SNR and finally
we describe, in section 5 the behavior of the algorithm.

2 Principle of the algorithm based on inverse problem

In that study, we consider digital holograms of a set of spherical particles recorded in the in-line
holography configuration (Gabor setup) (figure 1). We address the problem of recovering the position
and size of all the recorded particles from a given digital hologram.

The principle of the approach we propose in [12] is to consider this problem as an “inverse prob-
lem”. The associated direct problem is the computation of the intensity function in the hologram
plane given the position and size of all the particles. This latter problem, known as the recording
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model determination, is well known and particularly simplein the context of Fresnel’s diffraction
approximation. We then propose to solve the “inverse problem” by minimizing the difference be-
tween the recorded hologram and the model of this hologram. This minimization is made iteratively
by looking for, at each iteration, the parameters of the mostlikely particle and then subtracting the
contribution of this particle from the initial data (cleaning).

This section recalls briefly the recording model, the “inverse problem” formulation and its iterative
resolution. A more detailed presentation can be found in [12, 13].

2.1 Recording model of the hologram

PC

Laser

CCD
Beam expander
and spatial filter

z

y

x

seeded flow

{x ,y ,z }k k k

Figure 1: The in-line holography setup

We consider an in-line holographic setup (see figure 1) wherestudied particles are illuminated by
the laser beam and both reference wave and object wave interfere and are recorded by the detector
(typically a CCD sensor). The resulting hologram expression is a sum of terms depending on the
location and size of each particle. In the case of digital holography of spherical micro-particles, each
particle is described by few parameters{xk,yk,zk, rk}: x, y, z represent the spatial coordinates andr
the radius. The notations and coordinate system we use are summarized in figure 2. The simplified
expression of hologram intensity measured by the detector can be written as follows [13]:

I(x,y) = I0−
n

∑
k=1

αk gk(x−xk,y−yk)+ Ibg(x,y) (1)

whereαk is an amplitude factor of the diffraction pattern of thek-th particle,I0 represents the incident
intensity on the sensor andIbg the background noise. The functiongk(x,y) represents the diffraction
pattern of one particle and is given by the following equation:

gk(x,y) =
π r2

k

λzk
J1c

(

2π rk

√

x2 +y2

λzk

)

sin

(
π(x2 +y2)

λzk

)

(2)

whereλ is the laser wavelength. Let us notice that the speckle noisedue to second order interference
terms is negligible compared to the amplitude of the diffraction patterns of the other particles (Meng
[5]). We therefore neglect this noise. The background noise(Ibg(x,y)) comprises the noise due to
experimental setup, due to the electronic noise and due to the quantization noise.

The detector is a matrix of size (Ni ,Nj ), thus the intensity is only known on discrete values (i, j).
The recorded data (1) on the pixel[i, j] are:

d[i, j] = I0−
n

∑
k=1

αk gk[i, j]+ Ibg[i, j] (3)

wheregk[i, j] = gk(x−xk,y−yk) with x−xk = i∆ξ andy−yk = j∆ξ.
This recording model of a hologram is an additive model: the hologram intensity consists of the

sum of the diffraction-patterns of then particles plus a remaining background noiseIbg.
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Figure 2: Notations used in the hologram model.

2.2 Inverse problem formulation

The experimental digital hologram is given as a matrix of datad[i, j]. The inverse problem consists in
finding the valueI0, {αk}k=1,...n and the set of parameters of the particles{xk,yk,zk, rk}k=1,...n which
best model this hologram.

We denotesm[i, j] the parametric model of the hologram defined as:

m[i, j] = I0−
n

∑
k=1

αk gk[i, j] (4)

The latter inverse problem can be expressed as a global optimization problem. It consists in finding
the optimal set of parameters which minimizes the penalty function P of weighted least squares
defined by:

P = ∑
w

(m[i, j]−d[i, j])2 (5)

The operator∑
w

represents a weighted sum over the matrix of pixels(Ni ,Nj). For any matrixa[i, j],

it is defined as:

∑
w

a[i, j] =
Ni

∑
i=1

Nj

∑
j=1

w[i, j]a[i, j]. (6)

wherew[i, j] is a weight matrix taking into account the truncation effectand possible dead pixels and
can be defined as:

w[i, j] =

{
1 if the pixel (i, j) is measured,
0 otherwise.

(7)

2.3 Iterative particle detection

We have proposed an iterative algorithm to solve this problem particle per particle by a local opti-
mization [12].
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At iterationℓ, the parameters{xℓ,yℓ,zℓ, rℓ} of theℓ-th particle are determined by minimization of
the weighted least-squares penalty functionPℓ:

Pℓ = ∑
w

(mℓ[i, j]−dℓ[i, j])2 (8)

wheremℓ[i, j] is the intensity contribution of theℓ-th particle anddℓ[i, j] is the centered residual data
at theℓ-th step.

mℓ[i, j], which can be considered as the model of theℓ-th particle, is given by:

mℓ[i, j] = Iℓ−αℓ gℓ[i, j] (9)

with Iℓ the incident intensity on the residual hologram.
dℓ[i, j] represents the residual centered hologram after removing the contribution of theℓ−1 first

particles. It can be detailed from equations (3) and (4) as follows:

dℓ[i, j] = d[i, j]+
ℓ−1

∑
k=1

αk gk[i, j]+aℓ (10)

whereaℓ corresponds to the centering constant such as:

∑
w

dℓ[i, j] = 0. (11)

If we optimize with respect toIℓ andαℓ for other parameters fixed, it can be shown [13] that the
minimization ofPℓ is equivalent to the maximization of theQℓ criterion defined by:

Qℓ =

(

∑
w

dℓ[i, j] g̃ℓ[i, j]

)2

∑
w

g̃2
ℓ[i, j]

(12)

whereg̃ℓ is a centered version ofgℓ such that:

∑
w

g̃ℓ[i, j] = 0 (13)

3 Proposed definition of the signal to noise ratio

Some important questions about the previous algorithm havenot yet been studied. In particular, we
infer that the first iterations are delicate since few particles have been removed. In the same way we
don’t know precisely what are the accurate limits for the size of the analyzed field, and for background
noise or for the number of particles.

The aim of this section is to define a signal to noise ratio (SNR)adapted to the study of these
questions. This ratio, defined at a given iteration of the optimization algorithm, will evaluate the
relative contribution of a signal term corresponding to theoptimized particle and two noise terms
respectively due to the other remaining particles and due tobackground noise.

We first present a definition of the signal to noise ratio. Thenwe propose a numerical method to
compute it.
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3.1 Definition of the SNR

At iterationℓ, residual data are given by equation (10) and including (3) in (10), we have:

dℓ[i, j] = I0−αℓ gℓ[i, j]−
n

∑
k=ℓ+1

αk gk[i, j]+ Ibg[i, j]+aℓ (14)

by inserting (14) in (12), and tacking accounts of∑
w

g̃ℓ[i, j] = 0:

Qℓ =
1

∑
w

g̃2
ℓ [i, j]









αℓ∑
w

gℓ[i, j] g̃ℓ[i, j]

︸ ︷︷ ︸

t1

+
n

∑
k=l+1

αk∑
w

gk[i, j] g̃ℓ[i, j]

︸ ︷︷ ︸

t2

+∑
w

Ibg[i, j] g̃ℓ[i, j]

︸ ︷︷ ︸

t3









2

(15)

During the optimization step, we search for parameters{x+
ℓ ,y+

ℓ ,z+
ℓ , r+

ℓ } of the function ˜gℓ which
maximizeQℓ. In this equation three components can be distinguished: (t1) the energy on the sensor of
theℓ-th particle, (t2) the contribution of residual particles, and (t3) the contribution of the background
noise.

To study the efficiency of the optimization, we can modeled (t2) and (t3) as two random compo-
nents:

t2 =
n

∑
k=ℓ−1

αk∑
w

Gk[i, j] g̃ℓ[i, j] (16)

whereGk[i, j] is a random process defined by:

Gk[i, j] = gZkRk (i∆ξ−Xk, j∆ξ−Yk) (17)

whereXk,Yk,Zk,Rk are random variables.

t3 = ∑
w

Ibg[i, j] g̃ℓ[i, j] (18)

whereIbg is a random process (background noise).
Then, we can define the signal to noise ratio as:

SNRℓ =
t2
1

var(t2 + t3)
(19)

where var is the statistical variance operator.
As (t2) and (t3) are statistically independent, we have:

var(t2 + t3) = var(t2)+var(t3) (20)

Similarly, theGk processes are identical and each other independent as we suppose that there isn’t
any interaction between particles. We can denote themG and we have:

var(t2) =

(
n

∑
k=ℓ−1

α2
k

)

var

(

∑
w

G[i, j] g̃ℓ[i, j]

)

(21)

= α2
0(n− ℓ) var

(

∑
w

G[i, j] g̃ℓ[i, j]

)

(22)
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if αk are identical and equal toα0.
The noise variance can also be simplified if the noiseIbg is stationary. Its expression becomes:

var(t3) = var(Ibg) ∑
w

g̃2
ℓ [i, j] (23)

= σ2
bg ∑

w
g̃2

ℓ [i, j] (24)

whereσbg is the standard deviation of the background noise.
According to equations (20), (21) and (23), the signal to noise ratio (19) becomes:

SNRℓ =

α2
0

(

∑
w

g̃2
ℓ [i, j]

)2

α2
0(n− ℓ)var

(

∑
w

Gg̃ℓ[i, j]

)

+σ2
bg∑

w
g̃2

ℓ [i, j]
(25)

3.2 Numerical calculation

In this subsection, we consider that variance of the background noise is known and that the set of
particles is uniformly distributed into a rectangular spatial domainB. We then present the numerical
calculation of the value of the previous SNR for any iteration ℓ.

Given the iteration number and the parameters of the particle optimized at stepℓ, all the terms
of equation 25 are easily calculable except the variance of the noise term due to the other particles
defined as:

var(t ′2) = var

(

∑
w

G[i, j] g̃ℓ[i, j]

)

(26)

3.2.1 Cleaning effect

Let us notice that the influence of the cleaning must be taken into account in the calculation of this
variance. Indeed, as the particles are removed from the hologram, the statistical distribution of the
remaining particles changes. More precisely, without tacking account the influence of noise, particles
are removed in decreasing order of energy. In the case of mono-disperse particles, the ones of higher
energy are the ones located on the optical axis, and their energy decreases with the distance (ρ) to the
optical axis.

As the sensor is a square, at stepℓ, all the particles located in a square of size 2ρ have been
removed. As the particles are supposed to be uniformly distributed, we approximately can link the
iteration numberℓ and the distanceρ to the optical axis by:

ρ2 =
Sℓ

4n
(27)

whereS is the projected surface of the volume containing the particles, andn is the number of parti-
cles.

Then, at each iterationℓ, the remaining particles are uniformly distributed over a domain Bρ
defined as the initial domainB deprived of the square cylinder of size 2ρ centered on the optical axis.

From that point, the statistical variance oft ′2 can be calculated as:

var(t ′2) = E(t ′22 )−E(t ′2)
2 (28)

We detail in the following subsections how each components of var(t ′2) are calculated.
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3.2.2 Calculation of E(t ′2)

As we saw in section 3.1,
G[i, j] = gR,Z(i∆ξ−X, j∆ξ−Y) (29)

WhereX,Y,Z,Rare random variables.
We suppose that these variables are independents and uniformly distributed on intervals such as:

(X,Y) ∈ B = [Xa,Xb]× [Ya,Yb] (30)

Z = [Za,Zb] (31)

R= [Ra,Rb] (32)

When particles are removed, the domainB is deprived of the square of size 2ρ. The variablesX
andY are randomly distributed onBρ = B \square(0,2ρ)

E(t ′2) = E

[

∑
w

G[i, j] g̃ℓ[i, j]

]

(33)

=
Z

Bρ

Z Zb

Za

Z Rb

Ra

1
Bρ

1
Zb−Za

1
Ra−Rb

∑
w

gz,r g̃ℓ dxdydzdr (34)

∑
w

gz,r g̃ℓ = ∑
w

gz,r(i∆ξ−xℓ, j∆ξ−yℓ) g̃ℓ(i∆ξ−xℓ, j∆ξ−yℓ) (35)

= ∑
w

gz,r(∆ξ(i− i′),∆ξ( j − j ′)) g̃ℓ(i∆ξ, j∆ξ) (36)

with

x = i′∆ξ (37)

y = j ′∆ξ (38)

If we notegz,r [i, j] = gz,r(i∆ξ, j∆ξ), for i′ and j ′ integer, we have:

∑
w

gz,r g̃ℓ = (gz,r ∗wg̃ℓ) [i′, j ′] (39)

where∗ is the discrete convolution product.
If we approximate the integral onx,y by a discrete sum on[i′, j ′], the equation (33) becomes:

E(t ′2) ≈
∆ξ2

I(Bρ)

1
Za−Zb

1
Ra−Rb

Z Zb

Za

Z Rb

Ra
∑

(i′, j ′)∈Bρ

(gz,r ∗wg̃ℓ) [i
′, j ′]dzdr (40)

=
∆ξ2

I(Bρ)
∑

(i′, j ′)∈Bρ

(

g(1) ∗wg̃ℓ

)

[i′, j ′] (41)

where

g(1) =
1

Za−Zb

1
Ra−Rb

Z Zb

Za

Z Rb

Ra

gz,r dzdr (42)
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3.2.3 Calculation of E(t ′22 )

In the same way, we have:

E(t ′22 ) =
∆ξ2

I(Bρ)

1
Za−Zb

1
Ra−Rb

Z Zb

Za

Z Rb

Ra
∑

(i′, j ′)∈Bρ

(gz,r ∗wg̃ℓ)
2 [i′, j ′]dzdr (43)

4 Study of the SNR evolution

In this section, we study the evolution of the SNR during iterations of the algorithm for different
levels of background noise. We first define the parameters of holograms used. Then, the study is
done both theoretically using the expression given in the previous section and experimentally using
a set of simulated holograms. Finally, we compare the results and conclude on the validation of the
theoretical study and approximations made in the calculation in section 3.2.

4.1 Parameters of the study

(a) (b)

Figure 3: (a) Example of a hologram simulation [14] (1024×1024) made with 2000 par-
ticles (radius of50µm) spread throughout a volume of27.44× 27.44× 50mm located at
z0 = 250mm. The pixel size is6.7×6.7µm and the laser wavelength is0.532µm. The holo-
gram is coded on 8 bits depth. (b) Illustration of the distribution of particles throughout the
volume: 125 particles are located on the sensor (dark gray area of width L), 500 out-of-
field particles are located on the white area (4 times the sensor area), and 1500 particles
are located around the white area (in the light gray part) which corresponds to the noise.

We consider particles with constant radiusr0 that are randomly distributed under a uniform prob-
ability law throughout a volume centered on the optical axisand located at the distancez0. The holo-
grams (example in figure 3a) are realized with a sensor of 1024×1024 (pixels size of 6.7×6.7µm)
placed at aboutz0 = 250mmfrom the studied volume. Figure 3b illustrates the transverse distribution
of 2000 particles (radius of 50µm) throughout the volume of 27.44× 27.44× 50mm: 125 particles
are located on the sensor (dark gray rectangle), 500 out-of-field particles are located on the white

ISFV13/FLUVISU12 - Nice/France - France 2008 9
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rectangle (4 times the sensor surface), and 1500 particles are located in the light gray part. These
latter particles are not detected by the algorithm (since they are outside of the explored field of view).
They therefore contribute to the noise. The light gray rectangle corresponds to the projected surface
of the volume (16 times the sensor surface). The laser wavelength is 0.532µm. This parameters have
already been used in reference [14]. We add to this hologram awhite Gaussian noise with a variance
depending on a percentage of the hologram amplitude.

4.2 Theoretical study

The signal to noise ratio can be calculated theoretically according to the equation (25). For that,
three components have to be calculated for different distancesρ from the hologram center: the energy
of a particle, the variance of the other particles (according to section 3.2), and the variance of the
background noise. To simplify the calculation of the term corresponding to the variance of the other
particles (ie equations (40) and (43)), we take the same longitudinal distance for all the particles as
the mean longitudinal distancezm = 225mm. Then, using the relation in (27), the SNR can be plotted
as a function of the iteration number or of the distanceρ from the optical axis.

On figure 4, we can see several curves of the SNR plotted for different level of background noise.
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Figure 4: Theoretical curves of the SNR evolution as a function of the distance to the optical
axis. The SNR is plotted for different background noise level depending on a percentage of
the hologram amplitude (from 0% to 25%). The vertical dot-dash line represents the sensor
border.

4.3 Numerical experimentation

In this subsection, we study the evolution of the SNR from theresults of the analysis of simulated
holograms for different levels of noise. For that, the components of the SNR are estimated, during the
iterations of the inverse algorithm using the optimal parameters given by the algorithm.

The componentt1 of Qℓ (15) and can be obtained from the energy of the particle. The statistical
variance of the noise (componentst2 andt3) is estimated by the computation of the spatial variance
of the numerator ofQℓ on a square ring around the hologram center with a radius corresponding
to the distanceρ. On figure 5, we can see several curves of SNR for different background noise
levels (white Gaussian noise). The variance of background noise corresponds to a percentage of the
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hologram amplitude: 0% for (5a) to 25% for (5f) with a step of 5% between each figure. Theoretical
curves (see section 4.2) are plotted in blue and ones calculated on the simulated hologram in red. The
vertical dot-dash line represents the sensor border. The horizontal line shows the SNR limit value (see
section 5).
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Figure 5: Evolution of the SNR during the detection of particles. Theoretical curves are
plotted in blue and ones calculated on simulated holograms in red (+). The evolution
is studied for several noise levels. The variance of background noise corresponds to a
percentage of the hologram amplitude:0% for (a) to25%for (f) with a step of5%between
each figure. The vertical dot-dash line represents the sensor border. The horizontal line
shows the SNR limit value (see section 5).
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4.4 Comparison and validation

In this section we compare the theoretical curves (section 4.2) of the signal to noise ratio to the curves
obtained by the analysis of simulated holograms (section 4.3).

When particles are on the sensor area, we can observe (figure 5)a large dispersion of the exper-
imental points. When particles are located out-of-field the point are close to the theoretical curve.
This dispersion at the beginning is mainly due to the detection order of particles. Indeed, at this point,
particles are not detected as a function of the distanceρ. As a consequence, the variance of the noise
mainly varies as a function of the local neighborhood of the particle. On the contrary, out-of-field
particles are detected as a function of their distance to theoptical axis and the SNR curves on the sim-
ulations are in agreement with the theoretical ones. Another source of dispersion in experimentations
is due to the influence of the variation of the longitudinal position z of particles. In the theoretical
calculation we take this parameter constant (see section 4.2).

For the three first curves (5a and 5b), we can see that the SNR onthe theoretical curves is higher
than the one of the simulated hologram. It can be explained byadditional sources of noise which
appear during the iterations of the algorithm. For example,due to quantization errors or mismod-
elling, the contribution of a given particle is not totally removed during the cleaning step. This effect
increases the background noise level and decreases the SNR for the out-of-field particles.

On the whole, we can consider that the model is in good agreement with the numerical experi-
mentations. Even if the theoretical model does not exactly react in the same way as the algorithm,
especially for in-field particles, it is a good tool to explain the SNR evolution. It gives an average
value of the evolution of the SNR for a given setup, and a givenestimation of the particle density and
background noise level.

5 Analysis of the algorithm behavior

In the first part of the curves (ρ < 512), the particles are in the field. The noise is dominated bythe
remaining particles. The SNR is quite constant (it is slightly increasing and then slightly decreasing)
because the decrease in the particle energy is roughly compensated by the decrease of the noise due to
cleaning. In the second part, the SNR is increasing until a maximum. The particles energy continue
to decrease, but the noise due to the remaining particles is less important so as the SNR is increasing.
Then the background noise becomes to be significant and limitthe increasing of the SNR. In the third
part, the background noise is dominant and the SNR is decreasing until the algorithm stops.

We remark that the effect of the cleaning helps us to detect out-of-field particles even far away
from the hologram borders and as consequence it allows to enlarge the size of the studied field. The
effect of the cleaning provides a great improvement when there is a high number of particle in the
studied field. It has a lower effect when the background noiseis very high compared to the noise
generated by other particles or when the density of particleis low.

According to figure 5 we can roughly estimate a limit distancebeyond which the algorithm does
not detect particles anymore. We can then derive a limit SNR. In the case of figures 5a to 5c the
detection is not limited by the background noise but only because we choose to stop the algorithm
after the detection of 500 particles. For figures 5d to 5f the detection is limited by the background
noise level. For these curves we can define a limit value of theSNR beyond which the particles are no
longer detected. We estimate this value to 15dB by averagingthe SNR value of the farthest particles
from the optical axis (represented by an horizontal line on figure 5).

The previous value can help to define working limits of the algorithm. Given the setup parameters,
the background noise and the number of particles, a theoretical SNR curve can be calculated. If the
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SNR of particles located in the center (ρ = 0) is below the limit SNR, the starting of the algorithm may
be critical: the first particles may not be correctly detected and/or estimated. If the SNR at starting
is high enough, the limit size of the studied field can be estimated by finding the greatest distanceρ
having a SNR greater than the limit SNR. These last statementsmust be verified on more detailed
experimentations.

6 Conclusion

We have proposed in this contribution a signal to noise ratiostudy of our inverse problem approach
based algorithm. This study relies on a definition of the SNR adapted to the optimization criterion. It
allows the study of the evolution of the SNR during the iterations of the algorithm for different levels
of noise.

We have shown that this theoretical SNR can be numerically calculated if the statistical distribu-
tions of the particles parameters are given. Then, after a comparison of the theoretical results with
numerical experimentations on simulated holograms, we have validated our theoretical approach.

Finally, the shape of the curves as a function of the particledistance have been analyzed for
different levels of background noise. A limit SNR has been highlighted on the curves providing a
way to define the working limits of the algorithm.

Future work has to be realized to confirm the precise influenceof the limit SNR on real holograms.
The proposed SNR definition can also be used to study the effect of experimental parameters as the
hologram distance, the number of particles or the number of pixels of the sensor. It can also be
noticed that the proposed approach can be adapted for the SNRstudy of other digital inline holography
algorithms.
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