Learning Stochastic Finite Automata for Musical Style Recognition

Abstract : Stochastic deterministic finite automata have been introduced and are used in a variety of settings. We use them to model musical styles: a same automaton can be used to classify new melodies but also to generate them. Through grammatical inference these automata are learned and new pieces of music can be parsed. We show that this works by proposing promising classification results and discuss further work.
Type de document :
Communication dans un congrès
Springer. International Conference on Implementation and Application of Automata (CIAA), Jun 2005, Sofia Antipolis, France. 3845, pp.345--346, 2005, Lecture Notes in Computer Science
Liste complète des métadonnées

https://hal-ujm.archives-ouvertes.fr/ujm-00376720
Contributeur : Frédéric Tantini <>
Soumis le : lundi 20 avril 2009 - 09:55:38
Dernière modification le : mercredi 25 juillet 2018 - 14:05:31

Identifiants

  • HAL Id : ujm-00376720, version 1

Collections

Citation

Colin De La Higuera, Frédéric Piat, Frédéric Tantini. Learning Stochastic Finite Automata for Musical Style Recognition. Springer. International Conference on Implementation and Application of Automata (CIAA), Jun 2005, Sofia Antipolis, France. 3845, pp.345--346, 2005, Lecture Notes in Computer Science. 〈ujm-00376720〉

Partager

Métriques

Consultations de la notice

134