Correction of Uniformly Noisy Distributions to Improve Probabilistic Grammatical Inference Algorithms

Abstract : In this paper, we aim at correcting distributions of noisy samples in order to improve the inference of probabilistic automata. Rather than definitively removing corrupted examples before the learning process, we propose a technique, based on statisticalestimates and linear regression, for correcting the probabilistic prefix tree automaton (PPTA). It requires a human expertise to correct only a small sample of data, selected in order to estimate the noise level. This statistical information permits us to automatically correct the whole PPTA and then to infer better models from a generalization point of view. After a theoretical analysis of the noise impact, we present a large experimental study on several datasets.
Type de document :
Communication dans un congrès
18th International Florida Artificial Intelligence Research Society conference, May 2005, United States. pp.493-498, 2005
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal-ujm.archives-ouvertes.fr/ujm-00378062
Contributeur : Marc Bernard <>
Soumis le : jeudi 23 avril 2009 - 14:54:45
Dernière modification le : vendredi 9 mars 2018 - 11:24:48
Document(s) archivé(s) le : jeudi 10 juin 2010 - 21:41:01

Fichier

hbs_flairs05_draft.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : ujm-00378062, version 1

Collections

Citation

Amaury Habrard, Marc Bernard, Marc Sebban. Correction of Uniformly Noisy Distributions to Improve Probabilistic Grammatical Inference Algorithms. 18th International Florida Artificial Intelligence Research Society conference, May 2005, United States. pp.493-498, 2005. 〈ujm-00378062〉

Partager

Métriques

Consultations de la notice

120

Téléchargements de fichiers

154