A Polynomial Algorithm for Subisomorphism of Open Plane Graphs
Guillaume Damiand, Colin De La Higuera, Jean-Christophe Janodet, Émilie Samuel, Christine Solnon

To cite this version:

HAL Id: ujm-00411610
https://hal-ujm.archives-ouvertes.fr/ujm-00411610
Submitted on 9 Jun 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A Polynomial Algorithm for Subisomorphism of Holey Plane Graphs

Guillaume Damiand
Colin de la Higuera
Jean-Christophe Janodet
Emilie Samuel
Christine Solnon
Université de Lyon, LAHC & LIRIS, 18 r du Pr Benoît Lauras, F-42000 St-Etienne, France

Guillaume.Damiand@Liris.cnrs.fr
Colin.de.la.Higuera@Univ-St-Etienne.fr
Jean-Christophe.Janodet@Univ-St-Etienne.fr
Emilie.Samuel@Univ-St-Etienne.fr
Christine.Solnon@liris.cnrs.fr

Abstract

We address the problem of searching for a pattern in a plane graph, that is, a planar drawing of a planar graph. We define plane subgraph isomorphism and give a polynomial algorithm for this problem. We show that this algorithm may be used even when the pattern graph has holes.

1. Introduction

Many applications involve mining graphs in order to discover frequent connected subgraphs. If this problem may be solved in output-polynomial time for some specific classes of graphs such as trees (Chi et al., 2005), tenuous outerplanar graphs (Horvath et al., 2006), or bounded treewidth graphs (Horvath & Ramon, 2008), it remains challenging in the general case. This mainly comes from the fact that subgraph isomorphism is \(\text{NP} \)-complete in the general case.

In this paper, we focus on plane graphs, i.e., planar graphs that are embedded in planes. Indeed, when graphs model objects defined on planes, such as images, one may consider the planar embedding of the graph. In (Damiand et al., 2009), we have defined and studied the plane (sub)graph isomorphism problem. We have shown that it can be solved in quadratic time whenever the pattern graph is compact, that is, the pattern graph may be obtained by iteratively removing nodes and edges that are incident to the unbounded face.

However, compact plane graphs are somehow restricted, because they do not have any hole. Thus, it would be impossible to use compact plane graphs to model and search for a cup with a handle for instance (see Fig. 1). Indeed, the background of the cup, visible through the handle, would be integrated to the modelling graph, so that the cup could not be searched independently of the background.

In this paper, we extend Damiand et al. (2009)’s algorithm to solve the sub-isomorphism problem for plane graphs with holes.

2. Plane Graphs

A graph is a pair \(G = (V, E) \) where \(V \) is a set of vertices and \(E \) is a set of edges. Below, all the graphs are supposed connected, that is, every pair of vertices is linked by a sequence of edges.

A planar embedding of a graph \(G \) is an injective mapping \(\phi \) that assigns 2D points to vertices, and 2D curves to edges. \(G \) is planar if an embedding exists such that no two embedded edges intersect, except at their endpoints. A theorem by Fáry (1948) states that given a non-crossing representation of a planar graph, it is always possible to move the vertices so that the edges are drawn with straight-line segments. Hence, we only consider planar embeddings such that embedded edges are straight-line segments that are defined by the 2D embedding of their endpoint vertices.

Several embeddings may however exist for a graph. A plane graph is a triple \(G = (V, E, \phi) \) such that \((V, E) \) is

Figure 1. Two cups that should be modelled by holey graphs in order to remove the background which is visible through the handle.
A compact plane subgraph isomorphism problem be-

Figure 2. A face-connected plane graph G_1 with 8 bounded
faces (labeled from A to H) and 1 unbounded (white) face.

a planar graph and $\phi : V \rightarrow \mathbb{R}^2$ is an embedding of the
vertices such that no two embedded edges intersect, except at their endpoints.

A plane graph is made of (bounded or unbounded)
faces: when considering the planar embedding, the
complement of the set of edges is a disjoint union of
simply connected regions called faces. For instance,
the plane graph of Fig. 2 is made of 9 faces: Faces
A to H are bounded whereas the white face is un-
bounded. Let faces(G) denote the set of faces defined
by plane graph $G = (V, E, \phi)$. For each $f \in$ faces(G),
we note boundary(f) the sequence of vertices encoun-
tered when walking along the boundary of f, having
f on the right hand side. This boundary is unique up
to cyclic permutations.

We finally introduce face-connectivity, that is based on
sequences of faces that share common edges. Formally,
two faces $f, g \in$ faces(G) are sewn if there exists an
edge $(i, j) \in E$ which belongs both to boundary(f)
and boundary(g). Graph G is face-connected if for
each $f, g \in$ faces(G), there exists a sequence of faces
f_1, f_2, \ldots, f_n such that $f = f_1$, $g = f_n$, and faces f_i and
f_{i+1} are pairwise sewn, for all $1 \leq i < n - 1$.

3. Compact Plane Subgraph
Isomorphism and Combinatorial
Maps

A compact plane subgraph isomorphism problem be-
tween a pattern plane graph $G_p = (V_p, E_p, \phi_p)$ and a
target plane graph $G_t = (V_t, E_t, \phi_t)$ consists in de-
ciding whether G_p is isomorphic to some subgraph
of G_t which is obtained from G_t by iteratively re-
moving nodes and edges that are adjacent to the un-
bounded face (see Fig. 3). More precisely, one should
find a mapping $h : V_p \rightarrow V_t$ such that (i) h is in-
jective, (ii) h preserves the edges, i.e., $\forall \{x, y\} \in E_p$,
one has $\{h(x), h(y)\} \in E_t$, and (iii) h preserves the
faces, i.e., for every face $f \in$ faces(G_p), there exists a
face $g \in$ faces(G_t) such that for every edge $\{x, y\} \in

Figure 3. A face-connected plane graph G_2 which is a com-
 pact subgraph of G_1 (given in Fig. 2).

boundary(f), one has $\{h(x), h(y)\} \in$ boundary(f).

In (Damiand et al., 2009), we have proposed a poly-
nomial algorithm for the plane subgraph isomorphism
problem where the pattern graph G_p must be face-
connected. This algorithm is derived from an algo-
rithm that solves the sub-isomorphism problem for
combinatorial maps. Combinatorial maps were intro-
duced in the early 60’s to efficiently implement plane
graphs (Edmonds, 1960; Tutte, 1963). They describe
the topological organisation of plane graphs by decom-
posing every edge (i, j) into two darts $(i \rightarrow j)$
and $(j \rightarrow i)$, and by using two functions β_1 and β_2 which
respectively define dart successions in face boundaries
and face connectivity (see Fig. 4).

The algorithm proposed in (Damiand et al., 2009) for
solving the submap isomorphism problem is based on
the fact that, given any starting dart, the traversal of
a combinatorial map (that is, the order in which
.darts are discovered) is unique, provided that one has
fixed (1) the strategy used to memorize darts that were
discovered but not exploited yet (e.g., Last In First Out
/LIFO), and (2) the order in which β_1 and β_2 are used
to discover new darts (e.g., β_1 before β_2).

Hence, to determine if a pattern map M_p is sub-
isomorphic to a target map M_t, we choose a starting
dart d_p in M_p, and for every dart d_t of M_t, we perform
a traversal of M_p starting from d_p, and a traversal of
M_t starting from d_t. Each time a new dart is discov-
A Polynomial Algorithm for Subisomorphism of Holey Plane Graphs

Figure 5. Finding a car in an image: The original image, coming from the MOVi dataset (Luo et al., 2003), is on the left. The plane graph obtained after segmentation is on the middle. The car has been extracted and rotated on the right. It is found again in the original image using Damiand et al. (2009)’s algorithm.

Finding a car in an image: The original image, Figure 5.

...erated in M_{p}, it is matched with the corresponding dart in M_t. At the end of the traversal, we check whether the matching that has been built actually defines a subisomorphism (i.e., the problem is solved) or not (i.e., we try with another starting dart in M_t).

Each traversal may be done in linear time w.r.t. the number of darts, and in the worst case one has to perform a traversal for every dart of M_t. Hence, this algorithm is quadratic w.r.t. the number of darts. Moreover, we have shown in (Damiand et al., 2009) that this algorithm for solving the submap isomorphism problem could be used to solve the compact plane subgraph isomorphism problem, provided that the pattern graph is face-connected. We have also shown that this algorithm could be used to find patterns in images modelled by plane graphs (see Fig. 5).

4. Plane Subgraph Isomorphism for Graphs with Holes

As pointed out in the introduction, when looking for a pattern in an image, one may want to remove some parts of the image (corresponding to the background). This could be done by modelling the pattern image with a holey plane graph, i.e., a plane graph such that some faces have been removed.

We define the plane subgraph isomorphism for graphs with holes as follows. Consider a pattern compact plane graph G_p = (V_p, E_p, φ_p), a set of required faces F ⊆ faces(G_p), and a target plane graph G_t = (V_t, E_t, φ_t). Let V_{F}^p denote the set of vertices that appear in F and E_{F}^p, the corresponding set of edges. One should find a mapping h : V_{F}^p → V_t such that (i) h is an injection, (ii) h preserves edges, i.e., ∀{x, y} ∈ E_{F}^p, one has {h(x), h(y)} ∈ E_t, (iii) h preserves the faces of F, i.e., for every face f ∈ F, there exists a face g ∈ faces(G_t) such that for every edge {x, y} ∈ boundary(f), one has {h(x), h(y)} ∈ boundary(f).

For example, in Fig. 2, the graph obtained from G_1 by eliminating faces D and H (thus, setting F = {A, B, C, E, F, G}) would be a plane graph with holes and a face-connected subgraph of graph G_1.

The algorithm for deciding the plane subgraph isomorphism problem for graphs with holes is derived from the submap isomorphism algorithm of (Damiand et al., 2009) as follows: in the traversal of the pattern graph, the faces that do not belong to the set of required faces F must not considered. Note that the set of required faces F has to be face-connected.

Acknowledgments

This work was supported in part by the 1st Programme of the European Community, under the PASCAL 2 Network of Excellence, IST-2006-216886, and Project BLANC07-1_184534 of the French ANR.

References

Horvath, T., Ramon, J., & Wrobel, S. (2006). Frequent subgraph mining in outerplanar graphs. KDD’06. ACM.
