Approximate roots of a valuation and the Pierce-Birkhoff Conjecture - Archive ouverte HAL Access content directly
Journal Articles Annales de la Faculté des Sciences de Toulouse. Mathématiques. Year : 2012

Approximate roots of a valuation and the Pierce-Birkhoff Conjecture

(1) , (2) , (1) , (3)
1
2
3

Abstract

This paper is a step in our program for proving the Piece-Birkhoff Conjecture for regular rings of any dimension (this would contain, in particular, the classical Pierce-Birkhoff conjecture which deals with polynomial rings over a real closed field). We first recall the Connectedness and the Definable Connectedness conjectures, both of which imply the Pierce - Birkhoff conjecture. Then we introduce the notion of a system of approximate roots of a valuation v on a ring A (that is, a collection Q of elements of A such that every v-ideal is generated by products of elements of Q). We use approximate roots to give explicit formulae for sets in the real spectrum of A which we strongly believe to satisfy the conclusion of the Definable Connectedness conjecture. We prove this claim in the special case of dimension 2. This proves the Pierce-Birkhoff conjecture for arbitrary regular 2-dimensional rings.
Fichier principal
Vignette du fichier
approximatelastversion.pdf (637.97 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

ujm-00461549 , version 1 (04-03-2010)
ujm-00461549 , version 2 (09-09-2010)
ujm-00461549 , version 3 (09-02-2012)

Identifiers

Cite

François Lucas, James Madden, Daniel Schaub, Mark Spivakovsky. Approximate roots of a valuation and the Pierce-Birkhoff Conjecture. Annales de la Faculté des Sciences de Toulouse. Mathématiques., 2012, 21 (2), pp.259-342. ⟨10.5802/afst.1336⟩. ⟨ujm-00461549v3⟩
369 View
274 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More