Fusion of tf.idf Weighted Bag of Visual Features for Image Classification

Abstract : Image representation using bag of visual words approach is commonly used in image classification. Features are extracted from images and clustered into a visual vocabulary. Images can then be represented as a normalized histogram of visual words similarly to textual documents represented as a weighted vector of terms. As a result, text categorization techniques are applicable to image classification. In this paper, our contribution is twofold. First, we propose a suitable Term-Frequency and Inverse Document Frequency weighting scheme to characterize the importance of visual words. Second, we present a method to fuse different bag-of-words obtained with different vocabularies. We show that using our tf.idf normalization and the fusion leads to better classification rates than other normalization methods, other fusion schemes or other approaches evaluated on the SIMPLIcity collection.
Type de document :
Communication dans un congrès
Content Based Multimedia Indexing, Jun 2010, France. pp.124-129, 2010
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

https://hal-ujm.archives-ouvertes.fr/ujm-00501523
Contributeur : Christophe Moulin <>
Soumis le : vendredi 13 août 2010 - 13:44:03
Dernière modification le : jeudi 11 janvier 2018 - 06:20:34
Document(s) archivé(s) le : mardi 23 octobre 2012 - 12:11:15

Fichier

CBMI_2010.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : ujm-00501523, version 1

Collections

Citation

Christophe Moulin, Cécile Barat, Christophe Ducottet. Fusion of tf.idf Weighted Bag of Visual Features for Image Classification. Content Based Multimedia Indexing, Jun 2010, France. pp.124-129, 2010. 〈ujm-00501523〉

Partager

Métriques

Consultations de la notice

204

Téléchargements de fichiers

848