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Abstract A video sequence is more than a sequence of

still images. It contains a strong spatial–temporal correla-

tion between the regions of consecutive frames. The most

important characteristic of videos is the perceived motion

foreground objects across the frames. The motion of fore-

ground objects dramatically changes the importance of the

objects in a scene and leads to a different saliency map of

the frame representing the scene. This makes the saliency

analysis of videos much more complicated than that of still

images. In this paper, we investigate saliency in video

sequences and propose a novel spatiotemporal saliency

model devoted for video surveillance applications. Com-

pared to classical saliency models based on still images,

such as Itti’s model, and space–time saliency models, the

proposed model is more correlated to visual saliency per-

ception of surveillance videos. Both bottom-up and top-

down attention mechanisms are involved in this model.

Stationary saliency and motion saliency are, respectively,

analyzed. First, a new method for background subtraction

and foreground extraction is developed based on content

analysis of the scene in the domain of video surveillance.

Then, a stationary saliency model is setup based on mul-

tiple features computed from the foreground. Every feature

is analyzed with a multi-scale Gaussian pyramid, and all

the features conspicuity maps are combined using different

weights. The stationary model integrates faces as a sup-

plement feature to other low level features such as color,

intensity and orientation. Second, a motion saliency map is

calculated using the statistics of the motion vectors field.

Third, both motion saliency map and stationary saliency

map are merged based on center-surround framework

defined by an approximated Gaussian function. The video

saliency maps computed from our model have been com-

pared to the gaze maps obtained from subjective experi-

ments with SMI eye tracker for surveillance video

sequences. The results show strong correlation between the

output of the proposed spatiotemporal saliency model and

the experimental gaze maps.

Keywords Visual saliency � Motion saliency �
Background subtraction � Center-surround saliency �
Face detection � Video surveillance

Introduction

Under natural viewing conditions, humans tend to focus on

specific parts of an image or a video which evokes our

interests naturally. These regions carry most useful infor-

mation needed for our interpretation of the scenes. Video

contains more information than a single image, and the

perception of video is also different from that of single

image because of the additional temporal dimension of the

sequence. Several saliency models have been proposed in

recent years. Itti’s model [1] is the most widely used sal-

iency model for stationary image. GAFFE [2], frequency-

tuned saliency detection model [3] and the model based on

phase spectrum and inverse Fourier transform [4] are other
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saliency models for still images. All of them adopted the

bottom-up visual attention mechanism. In [3], image sal-

iency map is obtained from the range of frequencies in the

image spectrum that represent the important image details.

Next, the outputs of several band-pass filters are combined

to compute the saliency map via DOG (Difference of

Gaussians). Low level image features including intensity,

orientation and color or contrast are used to construct

feature conspicuity maps, which are then integrated into

the final saliency map with WTA (Winner Take All) and

IOR (Inhibition of Return) principles inspired from the

visual nervous system [1, 2]. Besides the above low level

features, face, text and other features have also been con-

sidered for saliency analysis [5, 6]. All of them are

designed for the saliency analysis of stationary image

instead of video. The perception of visual saliency in video

is much different from that in still images. For example, the

texture feature of an object can be salient in a still image

meanwhile may not be perceived when the object moves

fast in a video. So the above stationary saliency model is

not necessarily relevant to characterize the saliency in a

video.

Usually, videos are viewed as frames sequence, with a

certain frames rate used to render the video with natural/

smooth motion. Through video display, we can get a clear

perception of the real scene with some factors such as who,

where, what [7]. Video saliency involves more information

than that can be found in still images and is more com-

plicated than stationary image saliency. Meanwhile, many

papers have contributed to static saliency detection fewer

papers purely dealt with spatiotemporal saliency. Many

papers devoted to video saliency detection are based on the

computation of motion saliency map [8–11], other are

based on the computation of space–time saliency map.

Thus, Marat et al. proposed in [12] a space–time saliency

detection algorithm, which fuses static saliency map and

dynamic saliency map. Gao et al. proposed in [13] a

dynamic texture model in order to capture the motion

patterns even in the case that the scene is itself dynamic.

Zhang et al. extended in [14] their SUN framework to a

dynamic scene by introducing temporal filter (Difference

of Exponential:DoE) and fitting a generalized Gaussian

distribution to the estimated distribution for each filter

response. Compared with other spatiotemporal saliency

models, such as the ‘‘surprise’’ model [15], which lack of a

sophisticated unified representation for the spatial and

temporal components of saliency, the proposed model is

based on a unified framework of the spatial and temporal

components of saliency. Furthermore, it does not require

many design parameters such as the number of filters, type

of filters, choice of the non-linearities, proper normaliza-

tion scheme, nor to learn a visual saliency model directly

from human eye-tracking data using a support vector

machine (SVM). Lastly, compared to space–time models,

the proposed model is not based on the computation of

all local region neighborhoods, such as in [11], nor on

the computation of local kernels, such as in [16], but on

the computing of local motion vectors of foreground

objects.

Motion is an important part in videos; however, videos

are more than only motion. Both static saliency map and

motion saliency map should be considered. Likewise, other

information such as distance, depth and spatial position

should also be involved. In [8], raw motion map is

described using the difference of neighboring images

which is a very rough description of motion. For example,

some light intensity change might be viewed as motion. In

[9], motion saliency is obtained from the module of motion

vector derived from optic flow equation. The magnitude

and angle of the motion vectors are two important

parameters, but also the direction of the motion. This latter

is overlooked in [9]. In [10], a motion attention model is

proposed based on motion intensity, spatial coherence

inductor and temporal coherence inductor. As for the

model proposed in [8], in the latter model some fault

motions might be detected due to illuminant changes, such

as shadows, in local areas of the background instead of real

foreground object movement. In [11], the continuous rank

on the eigenvalue of coefficient metric derived from

neighborhood optical flow equation is viewed as a mea-

surement for motion saliency. But sometimes the optical

flow cannot get the accurate motion especially when there

is no enough change of gray depth.

Most of the above saliency map methods are based on

the bottom-up attention mechanism. Motion feature and

other stationary features including color, orientation and

intensity are viewed as low level features computed from

the bottom. In all these models, every feature is individu-

ally analyzed for feature conspicuity and finally combined

with different weights. In fact, human perception is more

complicated, both bottom-up and top-down framework

should be involved. For example, just after looking few

frames in a video, a viewer might unconsciously start

searching for similar objects in the following successive

frames. Meanwhile the bottom-up process is task inde-

pendent; the top-down process is task-dependent. The top-

down process intervenes both in passive and in active

viewing such as visual search, object tracking, scene

comprehension. [12]. Thus, the analysis of first frames

provides unconsciously some video’s semantic informa-

tion, including foreground/background information, to the

viewer which is used to predict gaze for the following

frames. Moreover, our visual system is able to detect cer-

tain objects more easily than others, especially human

faces. Indeed, it has been shown that humans are able to

process complex images and to recognize familiar objects
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very rapidly [13]. Especially, for surveillance videos, the

unconscious searching operation is more focused on

human shapes than any other object shapes. Lastly, after

watching few frames observers deduce certain information

about the scene watched such as the presence of moving

objects in front of a still background. Therefore, fore-

ground objects detected in previous frames will attract

more the attention of observers in the following frames

than the background. Any saliency model based on visual

perception devoted to video surveillance should consider

all these visual phenomena. For this reason, in this paper,

we propose to analyze the content of a scene through a

background subtraction and foreground objects extraction.

As suggested in [17], the related problem of background

subtraction is treated here as the complement of saliency

detection, by classifying non-salient (with respect to

appearance and motion dynamics) point in the visual field

as background. The first step of our approach consists to

analyze the scene’s semantic content through a bottom-up

attention process based on the difference between fore-

ground objects and background. The second step consists

to compute features saliency map and motion saliency

map based on this information (see synopsis shown in

Fig. 1). The first contribution of this paper is to propose a

new technique based on the partitioning of the scenes in

foreground objects and background to analyze the

semantic content of surveillance videos. This technique

based on a top-down attention process has never been

done in any previous research on saliency detection. The

second contribution of this paper is to address the video

saliency problem through a unified approach combining

bottom-up and a top-down attention models. For the for-

mer, low level features such as color, intensity and ori-

entation are used, for the latter, face and foreground

objects have been considered. Both stationary saliency and

motion saliency maps have been considered in our

approach. Next saliency maps are merged based on a

center-surround framework approximated by a spatial

Gaussian distribution.

The proposed approach is constrained by three

assumptions: (a) salient objects are distinct of the back-

ground, (b) the number of interesting objects in the scene is

limited, and (c) even if the background is not static the

information provided by the background is less useful to

the observer than foreground moving objects. These

assumptions, which are observed especially in surveillance

videos in indoor environments, limit the usability of

existing methods based on background subtraction [18] but

make the foreground object detection easier. Lastly,

methods based on background subtraction can be easily

extended to any video object detection problem satisfying

the same constraints (e.g. an object of interest in a dynamic

environment such as a moving car in outdoor environ-

ment). In these cases, relevant information can be learned

from frames and task contexts in predicting where humans

look while performing complex visually guided behavior

[12].

The following sections of the paper are arranged as

follows: background detection and foreground extraction

based on scene understanding are described in ‘‘Scene

understanding and background extraction in surveillance

video’’. Next, a novel spatiotemporal model for saliency

detection is proposed in ‘‘Multi-feature model for saliency

detection’’. Lastly, comparative results based on psycho-

physical experiments and objective metrics are given in

‘‘Discussion and Experiments’’ to evaluate the performance

of the proposed method relatively to the performance of

Itti’s model, frequency-tuned model and phase spectrum

model, and GBVS model. Conclusions are given in last

section.

Scene Understanding and Background Extraction

in Surveillance Video

For scene understanding in videos, three factors are nec-

essarily included, who, where and what. Those factors are

usually related to foreground objects, background, motion

and events [19]. In video surveillance applications, after a

short period of analysis of the semantic content of the video

based on an unconscious bottom-up attention process, the

observer attention is focused on the moving parts in the

foreground. The background becomes useless unless

moving objects appear in the background. The analysis of

first frames provides to the observer some semantic infor-

mation on the video, including foreground/background

information, which are then used to analysis the following

frames. So, if there is no change in the background of the

current frame compared to previous frames, then it is not

necessary to update the background information as the

background of the current frame provides no additional

useful information. That is the main reason whyFig. 1 Synopsis of the spatiotemporal saliency model proposed
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background detection is first processed followed by fore-

ground extraction. This idea was already used in [20, 21].

We have restricted our study to video sequences with

static background. This limitation is not very restrictive as

different techniques can be used to segment a video into

continuous shots, e.g. see [22–24]. For complex dynamic

scenes, where local variation in the background (either

spatially or temporally) is significant, sophisticated models

must be used otherwise this leads to a poor level of per-

formance. The main shortcoming of sophisticated models,

such as the DiscSal algorithm proposed in [17], is their

computational performance. From the experiments, we

conducted, the assumption of a continuous background is

valid in the context of video surveillance. In a general way,

we consider that changes in background due to photometric

effects (e.g. shadows) or slow continuous movements (e.g.

camera motion) have little impact on the current frame

perception within a video sequence. We consider also that

short-term memory has a high impact on the current frame

perception meanwhile the impact of previous frames is

relatively low [25]. An experiment done for time-varying

quality estimation showed that human memory seems to be

limited to about 15 s [26].

Many methods have been used for background sub-

traction. According to different background modeling

approaches, these methods can be further classified as

parametric and nonparametric methods [17, 20]. For

parametric background modeling methods, the most com-

monly used model is the Mixture of Gaussians (MOG) [27,

28]. Another class of commonly used background model-

ing methods is based on nonparametric techniques, such as

Kernel Density Estimator (KDE) of [29] or the ‘‘surprise’’

model proposed by Itti et al. [15]. Comparing with the

parametric background modeling methods, the nonpara-

metric ones have the advantages that they do not need to

specify the underlying model and estimate its parameters

explicitly [20]. Therefore, they can adapt to arbitrary

unknown data distribution. The major drawback of non-

parametric methods is their computational cost. The main

advantage of nonparametric background techniques is their

simplicity [20, 21, 30]. Comparing with background

learning techniques (e.g. [27]), which require a training set

of ‘‘background only’’ images, the proposed approach

does not need a ‘‘global background model’’ or any type

of training. Comparing with batch processing techniques

(e.g. [31]), which require a large number of video frames,

the number of video frames required by the proposed

approach is related to the range of variation of the

background.

In [21], a sliding window was used to search background

pixels frame by frame. The mean shift algorithm was used

by Yazhou et al. in [20] to detect background pixels among

pixels emerging in video frames. Recently a new algorithm

based on quasi-continuous histograms (QCH) had been

proposed by Sidibé et al. in [30] to outperform the mean

shift algorithm. In the above background extraction meth-

ods, searching points are computed in every frame to

estimate the background of videos. In the following sec-

tion, we propose a new scene background extraction

algorithm for surveillance videos based on a different

searching process. The main idea of this algorithm is to use

statistical pixel information to generate background with

less searching points.

Background Extraction

In surveillance videos without camera movement, the

background is quasi-stable and only foreground objects

emerge temporarily in frames [30]. For example, several

frames of a surveillance video are shown in Fig. 2. Fig-

ure 3 shows the intensity variation at the center of the dark

circle shown in the Fig. 2.

Background models try to estimate the most probable

intensity and color values for every pixel in a scene. In

[20], Yazhou et al. proposed a model based on several

features as follows:

Vobsv ¼ Mobj þ Dcam þ C þMbgd þ Nsys þ Sillum ð1Þ

where Vobsv describes the observed values in the scene,

Mobj the moving objects, Dcam the camera displacement,

C the ideal background scene, Mbgd the moving back-

ground, Nsys the system noise, and Sillum the long-term

illumination change.

Considering the two limitations considered above on

scene content and time limit for surveillance videos, the

camera movement and background movement are omitted

Fig. 2 Frames of a surveillance video
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in our background extraction model. Both the noise from

image sensor, Nsys and long-term illumination change are

included in Nnoise. Then, we propose a simplified model for

background extraction and foreground extraction as

follows:

Vobsv ¼ Vbackground þ Nnoise þ Vforground ð2Þ

Nnoise describes the system noise such as the background

can be considered as stable, as shown in Fig. 3.

We propose an algorithm similar to the mean shift

algorithm adopted in [20] to search the emerging pixels of

highest frequency in a sequence as background pixels. The

advantage for our algorithm is its higher performance in

term of computational time since it is based on binary tree

searching algorithm that can be easily parallelized instead

of sequential searching as that in [20]. The emerging

pixels are computed from a temporal sliding window

defined by the sliding window length (li) and height (hi).

For example in Fig. 3, this sliding window corresponds to

the red rectangle superimposed on the pixels intensity

values curve. The length characterizes the number of

successive frames taken into account for background

extraction. The height defines the maximal range of var-

iation for the background. This range of variation is

related to the range of variation of the noise. In general, in

surveillance videos, the distribution of pixel values

belonging to the background varies within a small range

in consecutive frames.

The use of a temporal sliding window mechanism is

related to how background is perceived by the Human

Visual System [30, 32]. In a general way, observers make

a primary decision on whether the current pixel belongs to

background after watching the first frames of a video.

Then, they move their eyes onto the following frames just

as moving a sliding window on those frames. If there is no

change or only small change and that the change lasts

very shortly in the following frames, the observers con-

firm their previous estimation on background. Below we

give a clear definition of the temporal sliding window and

of the binary tree searching algorithm used to search the

pixels with the highest probability of belonging to the

background. For every sliding window, the following

attributes are computed: the mean value (li) and the

standard deviation value (di) of all pixels of the current

window in the current frame, and the number (ni) of pixels

emerging in this window. In this study, we have consid-

ered that the background should be relatively stable during

the video (e.g. see red rectangle in Fig. 3), that means

that di should be small and that ni should be high in

Eq. (3).

Then background extraction is equivalent to find out the

pixels satisfying the following constraint:

min
di

ni
; i ¼ 1; . . .; k

s:t:
di� d0

ni� n0

� ð3Þ

where i is the number of the frame under study, k is the

number of frames in the sequence, d0 and n0 are constant

values.

Since background is viewed to be quasi-stable and is

often present in the video sequence, we can make the

hypothesis that all or parts of the current frame detected

as belonging to the background will definitely appear in

the previous frames or in the future frames of the video.

A novel window searching method is proposed here,

where the search window is moved using a binary tree

searching algorithm in ‘jumping’ mode rather than in

‘sliding’ mode as in [21]. As Lipton et al. did in [32],

some seeding points are first chosen and after that the

sliding window is constructed whose center is those

seeding points. Compared with the above methods, our

method is simpler as shown in the following pseudo code

(Fig. 4).

Fig. 3 Pixels intensity variation at the center of the dark circle

left right

...

N2

iN −2iN −2

Fig. 4 Binary tree search process
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After all pixels of background are searched, a median

filter is used to reduce the number of points, which should

belong to background but emerge in foreground.

Some background pixel values might be estimated with

several key frames such as the starting frame, middle frame

and final frame in a video sequence for saving calculation.

For example, the pixels in top-left corner in Fig. 5 are always

stable in the whole video sequence and those pixels might be

estimated without binary tree searching. Then, the tree

estimation of background pixels could be optimized and

improved with statistical data from key frames. Our pro-

posed method can be easily extended to common surveil-

lance video background generation. Figure 5 shows the

results of background generation using this approach. The

three first images correspond to original frames extracted

from a video and the fourth represent the generated

backgrounds.

Figure 6 shows some results obtained from different

background generation algorithms. We can see ghosts of

two persons in Fig. 6b, c. The background computed from

mean shift algorithm is only based on the frequency of

appearance of the pixel values, the person on the right

emerges from #75 until the end of the video sequence, so

the final generated background includes some points from

this person. Mean value method also produces similar

effect. However, the method that we propose with binary

tree search and key frames information provides better

results, as shown in Fig. 6d.

Foreground Extraction

Foreground can be extracted by comparing the background

and the current frame. Considering the observed model

given by Eq. (2), foreground is extracted according the

following equation:

Vforground ¼ Vobsv � Vbackground � Nnoise ð4Þ

Some results from foreground extraction are shown in

Fig. 7. We can see that the objects in foreground are

extracted except for only few missed points. Those points

have been wrongly classified as background because their

intensity and color is almost equal to that of background.

Some lost points in the foreground objects are shown in the

blue circle in Fig. 7c. Motion vectors can be used to

Step 1. choose 2N frames in surveillance video for background generation;

Step 2. divide the original search range into left and right as shown in Figure 4, each with 
length 2N-1,

scale=N-1;

Step 3. 

If  (scale is small enough (scale <2) )

goto Step 5;

Else

goto Step 4;

End

Step 4. 

k

k
rightleftk n

T
δ=∈ },{

If  Tleft < Tright

left frames are viewed as the total searching frames;

Else

right frames are viewed as the total searching frames;

End 

scale = scale -1;  

goto Step 3;

Step 5. calculate the average value in the current sliding window;

Step 6. Stop background generation.
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(a)

(b)

(c)

(d)

Fig. 6 Comparison of generated backgrounds: (1st column) Ideal

background, (2nd column) mean value, (3rd column) mean shift (4th

column) with our method, and (5th column) with Mixture of

Gaussians (MOG) [28]. a Background generation: example 1.

b Background generation: example 2. c Background generation:

example 3. d Background generation: example 4

(a)

(b)

(c)

Fig. 5 Examples of background generation. a Background generation: example 1. b Background generation: example 2. c Background

generation: example 3
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improve foreground extraction. Figure 8a shows the

motion vector field. Here, the regions in the extracted

foreground are considered to be parts of the same object if

the motion vectors in the neighborhood of the current block

have similar magnitude. Using motion vector field

information, the region highlighted by the blue circle in

Fig. 7 is significantly improved as shown in Fig. 7e. In

Fig. 8, we show that the extracted foregrounds are more

relevant than those obtained using the Mixture of

Gaussians method based on background subtraction, such

as in [28], especially for the continuous region highlighted

by the red circles in Fig. 8a–c.

Multi-feature Model for Saliency Detection

Figure 1 shows the framework that we propose for saliency

detection in surveillance videos. Based on the results from

background generation and foreground extraction, station-

ary saliency is computed via multi-feature conspicuity

maps including face and low level features such as color,

intensity and orientation. Motion saliency is calculated

based on motion vectors analysis and on the spatial posi-

tion of moving objects.

In the static saliency model proposed by Itti, there can be

several saliency regions with different priorities in one

image. This model can be extended to dynamic scenes if we

take into account motion, as motion detection contribute to

focus attention on moving objects in neighboring frames.

To extend the static saliency model proposed by Itti to

dynamic scenes, such as surveillance videos, we propose to

weight salient regions computed from the static saliency

model by motion information. Thus, when there is more

than one object in a scene, the higher priorities are given to

salient regions having a significant motion in neighboring

frames. Furthermore, we detect more easily moving objects

coming into the center field of our visual field instead of

those moving off the center field. Thus, the closer the dis-

tance to the visual field center, the more salient the object.

In order to take into account this effect related to the visual

perception (e.g. see [12, 17, 33–36]) we have defined a

distance to the center field to weight the motion saliency

inversely proportional to this distance. Accordingly, mov-

ing objects with higher priorities and closer distance to the

visual field center will be noticed first.

Each step of the proposed framework is detailed in the

following sections. In ‘‘Multi-feature stationary saliency’’,

we present a stationary saliency model based on face

detection as a high level feature and low level features

related to intensity, color and orientation. Then in ‘‘Motion

saliency map and a linear combination model weighted by

a Gaussian function’’, we present a motion saliency model

(a) (b) (c)

(d) (e) (f)

Fig. 8 Comparison of

foreground extractions:

a–c results obtained with the

proposed method, d–f results

obtained after background

subtraction by the Mixture of

Gaussians method [28]. a Frame

#173 with our method. b Frame

#113 with our method. c Frame

# 231 with our method. d Frame

#173 with MOG. e Frame #113

with MOG. f Frame #231 with

MOG

(a) (b) (c) (d) (e)

Fig. 7 Foreground extraction with or without taking into account the motion vector field. a Background image. b Current frame image.

c Foreground objects. d #173 motion vector. e Improved foreground
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based on motion vector field measurement and on distance

weights computed according to an exponential function.

Lastly in ‘‘Merging model of stationary and motion sal-

iency maps’’, we present a method to merge stationary

saliency map and motion saliency map.

Multi-feature Stationary Saliency

Several studies showed that low level features such as

intensity, color and orientation features contribute much to

our attention than other features and that the visual per-

ception is based on a bottom-up attention framework. In

the well-known model of Itti, every feature is analyzed

using Gaussian pyramids and multi-scales [1]. Seven fea-

ture maps are generated including one intensity, four ori-

entations (at 0, 45, 90, 135 degrees) and two color

components (red/green and blue/yellow). Next after a

normalization step, all those feature maps are combined

into three conspicuity maps including intensity conspicu-

ous map Ci, color conspicuous map Cc and orientation

conspicuous map Co. Finally, these conspicuity maps are

combined together to define a single saliency map

according to the following equation:

SItti ¼
1

3

X
k2i;c;o

Ck ð5Þ

Besides the above low level features, faces have also been

considered for saliency analysis [5, 6]. Cerf et al. showed that

faces are features, which focus more attention than other

features in many images. Psychological tests have proven

that face, head or hands can be perceived by observers prior

to any other details [37]. So faces can be used as high level

feature for saliency map. One drawback of Itti’s visual

attention mechanism model is that its saliency map model is

not well adapted for images with faces. Several studies in

face recognition have shown that skin hue features could be

used to extract the face information. To detect face, Cerf et al.

proposed in [6] to use a learning approach based on adaboost

algorithm but it requires many iterations. To detect heads and

hands in images, we propose instead to use the face

recognition and location algorithm proposed by Koch in

[38]. This algorithm is based on a Gaussian model of the skin

hue distribution in the (r0, g0) color space which is considered

as a color invariant space. For a given color pixel of values

(r0, g0), the model’s hue response is then defined by the

following equation:

hðr0;g0Þ

¼ exp �1

2

ðr0 �lrÞ2

r2
r

þ
ðg0 �lgÞ2

r2
g

þ
qðr0 �lrÞðg0 �lgÞ

rrrg

 ! !

ð6Þ

r0 ¼ r

r þ gþ b
and g0 ¼ g

r þ gþ b
ð7Þ

where ðlr; lgÞ is the average of the skin hue distributions,

r2
r and r2

g are the variances of the r0 and g0 components, and

q is the correlation between the components r0 and g0.
These parameters have been statistically estimated from

1153 photographs containing faces. The function hðr0; g0Þ
can be considered as a color variability function around a

given hue.

Next, a Gaussian Pyramid (GP) based on a multi-scale

sub-sampling operation and a Gaussian smoothing was

computed from hðr0; g0Þ. Then, the center-surround (CS)

map was calculated from the pyramid, in the same way as

in the Itti’s model. Thus, center-surround is implemented

as the difference between fine and coarse scales [1]. Lastly,

the results were normalized (Norm) to obtain the saliency

map Sface defined as follows:

Sface ¼ NormðCSfGPðhðr0; g0ÞÞgÞ ð8Þ

Then, stationary saliency based on multi-features

conspicuity is defined as follow:

SS ¼ f ðSItti; SFaceÞ ð9Þ

We use a linear model with estimated weights defined as

follow:

SS ¼
1

8
2Ci þ 2Cc þ Co þ 3CFð Þ ð10Þ

The linear model defined by Eq. (10) is the best

combination as possible that we can obtain by an

optimization-based approach in regards to the dataset

considered. In order to illustrate the effect of the face

feature CF on the saliency map see Fig. 9. Here Ci, Cc and Co

features are ineffective to detect the face of the man at the

center of the image. This optimization was obtained via an

exhaustive process. While a heuristic-driven approach could

serve very well to implement the main ideas set out here, we

found that the optimization-based approach produces equal

or better combinations of features than the heuristic-driven

method. Note that results shown below are meant to illustrate

the beneficial effect of a stationary saliency based on multi-

features, not to generate the best combination that could

possibly be created. That is the reason why we have not

considered other combinations than the linear model usually

used by other papers. Note also that the face in the right

corner of Fig. 9 is not detected as this face is out of the center

field so it is not considered as a salient region in regards to the

central-surround vision model.

For most images containing faces, heads or hands, this

model based on skin hue detection gives better results than

Itti’s model, i.e. gives more accurate saliency maps. The

example shown in Fig. 10 illustrates the difference

between Itti’s model and the stationary model proposed
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when we analyze images containing faces. The image ‘I18’

shown in Fig. 10a is a reference image including face, eyes

and hands of the Tampere Image Database (see [39]).

Figure 10b is the saliency map computed from the sta-

tionary model and Fig. 10c is the saliency map computed

from Itti’s model. The image computed from stationary

model seems more reliable in terms of visual perception

than those computed from Itti’s model as in a general way

observers focus on the neighborhood around eyes and tend

to observe, find and understand the expression on faces.

Motion Saliency Map and a Linear Combination Model

Weighted by a Gaussian Function

Motion feature is also involved in our video saliency map

model as it carries very important information about the

objects in a video and their actions within the scene.

Thanks to the motion information we know what happens

in a video. We can also know that some regions or objects

may be much less salient in video than in images. For

example, some texture of objects in images might be

omitted in videos with fast motion.

In this paper, the motion information computed in vid-

eos is based on motion estimation from motion vector field

computed with more than one reference frame. We use the

full searching and block matching algorithms to find the

most relevant motion vectors. These two algorithms are

normally used in video compressing such as mpeg-4AVC/

H.264. Motion vector field computed from motion esti-

mation is shown in Fig. 11b. Frame #62 is viewed as the

current frame, meanwhile the previous frame #61 is shown

in Fig. 11a. We can see that there seems to be some motion

in blue circles due to light flickering or other noise

although there is no movement in these areas. Fortunately,

the effect of those pseudo motions can be eliminated by the

above foreground extraction.

The motion saliency map is computed based on the

motion vector field, the intensity of motion vectors, spatial

coherence and temporal coherence of the motion as in [8].

The intensity of motion vector is defined by:

I ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mvxð Þ2þðmvyÞ2

q
ð11Þ

Besides the intensity of the current motion vector (mv),

the phase of motion vector, h angle, is defined by.

h ¼ arctan
mvy

mvx

� �����
���� ð12Þ

h is distributed in [0, 360�] after normalization.

Besides the current motion vector, the motion vectors of

the neighboring blocks in the same frame are also
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(a) (b) (c)

Fig. 10 Saliency region from stationary model and Itti’s model. a I18 image in TID2008. b Saliency map from stationary model. c Saliency map

from Itti’s model

(b)(a) (c) (d)

Fig. 9 Saliency map computed with different weights for merging CF

with other features. When the weight of CF = 0 that means that we do

not take into account the face feature CF in Eq. (9). The main

difference between these saliency maps is surrounded in red.

a Original frame. b Video Saliency map. c Saliency map computed.

d Saliency map computed superimposed to the image with a weight of

3/8 for CF with a weight of 0 for CF. (Color figure online)
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analyzed. If we consider the angle value of a motion vector

as a stochastic variable and compute its probability distri-

bution function, then the consistency of angles of motion

vectors in the neighborhood of the current block can be

measured by the entropy [40]. The higher the entropy is,

the poorer the consistency of angles is, and therefore the

motion is less salient in the current block. The spatial

motion saliency is therefore described by the entropy

derived from those motion vectors angles in the spatial

neighborhood. The distribution probability density qi of

angles variations is computed using the histogram distri-

bution of h values within the overlapped neighboring fields

as follows:

qi ¼ F
i

,XN

i¼1

F
i

ð13Þ

where Fi is the frequency of the ith bin of phases histogram

and N is the number of histogram bins of h values in a field

of k x k pixels.

Figure 12 shows an example of motion vectors com-

puted from blocks of size 16 9 16 pixels and of neigh-

borhood blocks of size 7 9 7 blocks and the corresponding

phase values histogram distribution.

Then the spatial motion saliency Cs is computed from

the entropy as follows:

Cs ¼ �
XN

i¼1

qi � lg qi ð14Þ

When the phases of motion vectors of a moving object

are consistent then Cs is small. The more the phases of

motion vectors are disordered, the higher Cs is and in this

case the motion information is not reliable. In a general

way the motions of higher intensity are more consistent

than motions of lower intensity, consequently Cs is more

sensitive to motions with lower intensity.

Extensive psychophysics experiments have shown that

motion saliency do not depend on absolute quantities, such

as the direction of the motion vectors fields, how coherent

their motion is, or the type of background motion [20].

Instead, the coherent perception of moving objects, even

when the vertex motions are incoherent and the back-

ground motion cannot be easily explained by a physical

geometric transformation, suggests that both motion sal-

iency and perceptual organization are driven by measure-

ments of local motion contrast [20, 41]. To account for the

variability between the state at time t and the sequence of

past states and to make the spatiotemporal features robust

enough to handle complex dynamic backgrounds we pro-

pose to analyze the temporal consistency of motion vectors.

Besides the above spatial saliency of motion vectors, the

temporal consistency of motion vectors of the current

frame with neighborhood frames is measured by the tem-

poral motion vectors entropy computed from the angles

histogram of motion vectors of the current block in pre-

vious L frames. When the phases of motion vectors of a

moving object are inconsistent in successive frames then

the motion information between blocks of same spatial

position in the neighboring frames is not reliable and Ct is

high. The more the phases of motion vectors of neighbor-

ing frames are consistent, the lower Ct is. In a generally

way, Ct is very sensitive to object motion.

(a) (b)Fig. 12 Motion vector field and

phase values histogram. In a:

the central blue rectangle
represents the current

neighborhood block and the red

rectangle represents the

neighborhood blocks taken into

account. a Motion vector field

of the 7th frame. b Histogram of

the 145th neighborhood block.

(Color figure online)

(a) (b)Fig. 11 Motion vectors field.

a #61 frame. b Motion vectors

of #62 frame
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Extensive psychophysics experiments have shown that

local motion contrast attracts attention causing a pop out

effect. This explains why search for a moving target among

stationary distractors is easier than in the opposite case or

than searching for a faster moving target among slow

moving distractors [42]. The more the velocity of an ele-

ment differs from that of the surrounding the more the

element is salient. Here, the more the motion vectors are

temporally consistent the smaller the probability is that the

temporal motion is salient.

Finally, motion saliency map is computed based on the

intensity of motion vector I, spatial motion saliency Cs and

temporal motion saliency Ct, as suggested in [10], as

follows:

SM ¼ I � Ctð1� I � CsÞ ð15Þ

This formula is justified by the fact that Cs is more

sensitive to motions with lower intensity, Ct is very

sensitive to object motion and that in a generally way,

motions of high intensity attract much more the attention of

observers than those of lower intensity.

Merging Model of Stationary and Motion Saliency

Maps

The stationary saliency map SS and motion saliency map

SM of every frame are then merged with different weights.

Some widely used methods such as Itti’s model assumed

that the Human Visual System can catch 3 or 5 salient

objects at the same time [1, 43]. This assumption is con-

tradicted by motion saliency models, especially for real

surveillance videos in CIF size. Though not enough

researches have been conducted by physiologists to support

this hypothesis, we believe that the Human Visual System

focuses mainly on only one moving object when there are

several objects moving simultaneously. This object corre-

sponds in general to the most salient moving object that is

coming into the center region of our visual field instead of

other objects moving outside our visual field. This

hypothesis is supported by the various gaze maps and

experiments that we conducted on surveillance videos.

Considering that the Human Visual System focus more

easily his attention on the moving object in the center of

observing window than those that are far away from the

center, we propose to weight the motion saliency according

to the following distance, next to merge the motion sal-

iency map with the stationary saliency map as follows:

SVG
¼ ða � SM þ 1� að Þ � SsÞ � wi ð16Þ

wi ¼ e�d ð17Þ

d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � xcð Þ2þ yi � ycð Þ2

q
8

ð18Þ

xc ¼
widthmb

2
; yc ¼

heightmb

2
ð19Þ

where widthmb and heightmb are the height and width from

the center of the frame and ðxc; ycÞ are the coordinates of

the center. wi is the weight of the block number i centered

on pixel of coordinates ðxi; yiÞ of size (16 9 16) located at

a distance descriptor d of pixel ðxc; ycÞ. wi is normalized

into [0,1] as shown in Fig. 13b and used to describe the

spatial position effect on motion saliency map. The more a

block is closed to the center point, the higher its weight is.

Beside the above merging method based on a 2-D

approximated Gaussian distance model, we have also tes-

ted other merging models for comparison purpose includ-

ing Mean, Max and Multiplication merging models as

follows:

SVmean
¼ SM þ SSð Þ

2
ð20Þ

SVmax
¼ MaxðSM; SSÞ ð21Þ

SVmulti
¼ SM � SS ð22Þ

Each salience map is linearly normalized to have zero

mean and unit standard deviation. The best experimental

combination that we obtained for Eq. (16) have been

achieved for a = 3/7. This combination based on a linear

(a) (b) 
Fig. 13 The motion saliency

computed in the current block is

weighted based on the distance

of the block to the center.

a Block position. b 2-D distance

model to weight blocks
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combination had been obtained from a database which

includes the TID2008 database [39] which contains 612

photographs with faces and head images, and our own

experimental database of surveillance videos, which

includes more than 1,000 frames.

Discussion and Experiments

In order to analyze the performance of the video saliency

maps computed from the model implemented, we compute

in ‘‘Comparisons between gaze maps and saliency maps’’

the gaze maps of several surveillance video sequences next

we compared our results with these gaze maps. Figure 14

show three examples of indoor surveillance videos used for

our analysis. Next, in ‘‘Quantitative comparison of saliency

maps’’, we make quantitative comparisons based on NSS

values.

Comparisons Between Gaze Maps and Saliency Maps

In our experiments we mainly used indoor surveillance

videos with people moving inside a static background. As

example in Figs. 15a, b there is two people with normal

walking action, meanwhile in Fig. 15c there is four people

with sudden actions. In the following, we mean by simple

action a video sequence with a continuous movement,

oppositely to sudden actions. Simple actions are differen-

tiated from sudden actions thanks to the motion vector

field. Simple motion are characterized by motion vectors

consistent both spatially and temporally, meanwhile sud-

den actions are characterized by more incoherent motion

vectors, as example see Fig. 15d, e. Let us note that in

these two figures some fault motions have been detected

due to local light changes in the background. These

motions do not affect much the motion saliency detection

as there is no motion in neighboring blocks. Figure 15b, c

show also that sudden actions attract more the attention

than continuous actions. This example 15 illustrates the

interest to analyze the coherence of motion vectors in

function of neighboring blocks. Furthermore, Fig. 15a, b

show that people moving within the center of the frame

attract more the attention than actions within the surround.

In this study we have used 16 video sequences shot by

ourselves. Large video sequences have been divided into

smaller video shots. The duration of the video shots is from

6 to 21 s. Then we have computed gaze maps from sub-

jective experiments done on those video shots. All the

experiments and parameter estimations outlined in this

paper are based on it. In our experiments, we have not used

outside videos or inside videos with camera motion as

either the motion vector fields are irrelevant or request to

compute the camera motion before extracting the back-

ground. As our model is based on a face features approach

it is not adapted to detect other objects defined by other

features. To explore this kind of videos we should consider

more complex models than the Gaussian model and other

features than the skin hue distribution. As example see

Fig. 16. Here, CF and wi features are effective to detect the

butterfly as it is positioned at the center of the image and its

hue distribution is quite similar to the skin hue distribution.

The CF feature is more effective than the hue distribution

of the background is different of the hue distribution. That

means that our saliency map algorithm can be extended to

any moving object provided, however, to implement

appropriate descriptors. To reach this aim, we could con-

sider a learning strategy to learn which features best

characterize/distinguish moving objects in the scene

[44–47].

The more video saliency maps are closed to the gaze

maps of videos the more the model used is performing in

terms on visual detection. To compute the gaze maps, we

did subjective experiments with an eye tracker. Twenty

observers, aged between 25 and 42, participated to the

experiments done with a 50 Hz infra-red SMI eye tracker.

During the experiments, observers were asked to watch

surveillance videos on a 17 inch CRT display as they

normally would do under normal viewing conditions. The

resolution of the display was of 1,024 9 768 pixels. The

distance between the monitor and the observer was

(a) (b) (c)

Fig. 14 Examples of indoor surveillance videos where only people

move in the scene. In these three video the people are the same but

their motion is different. a Video 1: 284 frames. b Video 2: 194

frames. c Video 3: 526 frames with 4 moving people with 4 moving

people with 4 moving people

Cogn Comput

123



between 60 and 70 cm. Before each experiment, a test was

performed to detect the dominant eye of the observer.

During experiments, observers’ dominant eye was tracked

and tracking data were saved with a system processing with

the SMI IView software. Gaze maps were computed from

fixation points of the dominant eye. First, a fixation fre-

quency map was computed for each frame of each video by

adding up all the fixation positions of each observer. As

with the Human Visual System, the fixation frequency map

was next filtered by a spatial Gaussian filter. These fre-

quency maps were filtered by a spatial Gaussian filter of

r = 37, which was chosen to approximate the size of the

viewing field corresponding to the fovea in the gaze map

[48]. The size of the Gaussian window was of 40 9 40

pixels. Next, the average of these Gaussian maps for all

observers was computed, then normalized and superim-

posed to the original frame with a colormap of 64 color

values, where blue colors correspond to lowest gaze map

values and red colors correspond to the highest gaze map

values, i.e. the most salient regions of a video frame.

Figure 17 shows the SMI device and the gaze map com-

puted for a frame superimposed to the original image.

Figure 18 shows two other frames of the same surveil-

lance video and the corresponding gaze map and saliency

map superimposed to the original image. Figure 18a, d are

two original frames of a same video. Figure 18b, e show

the corresponding gaze maps superimposed to the original

images and Fig. 18c, f show the video saliency maps

computed from the model that we propose superimposed to

the original images. In surveillance videos, the attention of

observers is usually attracted by moving objects, especially

those entering into the center area of the observed image.

That why we have proposed above to weight our video

saliency map model by a Gaussian distance. The results of

Fig. 18c show the effectiveness of this weighting function

and of the video saliency map model that we propose. As

(a) (b) (c) (d) 

Fig. 16 Example of saliency map computed for a frame without face.

When the weight of CF = 3/8 and wi = center-surround filter, the

stationary saliency map better detects the butterfly at the center of the

image. a Original frame. b Stationary saliency map with a weight of 0

for CF. c Stationary saliency map with a weight of 3/8 for CF without

center-surround weight (i.e. wi = 1). d Stationary saliency map with a

weight of 3/8 for CF with center-surround weight

(a) (b) (c)

(d) (e)

Fig. 15 Gaze map of different frame of the video 3 with different

actions. a People with normal walking action within the center (frame

#389). b People with normal walking action anywhere in the scene

(frame #155). c People with sudden actions anywhere in the scene

(frame #476). d Motion vector field of frame #389. e Motion vector

field of frame #476

Cogn Comput

123



we can see in Fig. 18c the moving object, i.e. the person,

which is in the center area of the image is detected both by

the gaze map computed from visual experiments and by the

video saliency map model that we propose.

Additionally to the above video saliency maps computed

merging stationary and motion maps with Gaussian

weights, other merging modes such as Mean, Max or

Multiplication have been also used in our experiments.

Figures 19 and 20 show two saliency maps computed with

different merging modes. Figures 19b and 20b represent

the gaze map images with the subjective gaze map super-

imposed on the original image. Figures 19c and 20c rep-

resent the corresponding video saliency maps image

computed with Gaussian weights superimposed on the

original image.

Among the four merging modes tested including Mean,

Max, Multiplication and Gaussian weights, the one which

gives the best results, i.e. the one for which the video

saliency maps are the closest of the subjective gaze maps,

is the mode computed with the linear combination defined

by Eq. (15) weighted by a center-surround function. This

shows that besides the stationary and motion features other

information such as distance or depth might also affect our

visual perception. The example of Fig. 21 shows the

impact of the center-surround weight on the saliency map.

Differences between Fig. 21c, d are subtle since both of

them are based on the same foreground and motion vector

field. But as with the center-surround weight the saliency of

boundary regions is reduced then the saliency map better

approximates the gaze map illustrated by Fig. 21b. Inver-

sely, there is no difference between Fig. 21g, h as all people

are outside the center of the image. The example of Fig. 22

shows the impact of the motion saliency on the saliency

map. a = 0 means that we only take into account the SS

stationary saliency map to compute the saliency map

without any motion information so only low level features

and face feature are considered in the saliency map, as

shown in Fig. 22d. a = 1 means that we only take into

account the SM motion saliency map without any low level

features and face feature in the saliency map, as shown in

Fig. 22c. If we compare the saliency maps predicted by the

proposed model with gaze maps obtained by subjective

experiments, here the best results are obtained with a =

3/7. Let us note that even if differences between Fig. 22b, d,

and between Fig. 22f, h are subtle they are nevertheless

noticeable. Some of these differences are surrounded in red.

In order to compare the relevance of the video saliency

model that we proposed with other saliency models such as

(a) (b) (c)

(e) (f) (g)

Fig. 18 Examples of gaze maps

computed from visual

experiments and of

corresponding video saliency

maps computed from our video

saliency model. a Original

image. b Gaze map

superimposed to the image.

c Video Saliency map

superimposed to the image.

d Original image. e Gaze map

superimposed to the image.

f Video Saliency map

superimposed to the image

(a) (b) (c) (d)

Fig. 17 Gaze map based on eye tracking and Gaussian filtering. a SMI device. b Original image. c Gaze map for #65. d Gaze map superimposed

to the image
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Itti’s model [1], frequency-tuned saliency detection [3] and

phase spectrum saliency model [4, 43], we propose to study

their closeness to the corresponding subjective gaze maps.

Itti’s model is considered as a reference model for sta-

tionary saliency map detection. Itti’s model can be exten-

ded to videos, based on a frame by frame approach, but in

that case the inter-frame information and motion infor-

mation are not taken into account. Then for a fair com-

parison, we compare also our model with GBVS model

which is an improved saliency detection model of the Itti’s

model [49]. For computing, the saliency map of the current

frame the GBVS model uses information computed from

previous frames. As example see Figs. 23 and 24. Among

the five saliency models tested the one which gives the best

results, i.e. the one for which the video saliency maps are

the closest of the subjective gaze maps, is the video sal-

iency model computed with center-surround weights. The

main errors of detection obtained with the other models

tested are linked to the detection of salient regions in sta-

tionary frame which are not salient in regards to motion.

Other errors are linked to the detection of salient regions in

stationary frame, such as the chair and the curtain at right

in the Fig. 23, which are outside the center area. Other

differences, more subtle, can also be seen as example on

moving people. Although GBVS is effectively relevant to

detect salient regions, such as moving people, GVBS gives

too much importance on large moving regions, such as the

legs and foot in Figs. 23 and 26. Compared to our model

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 19 Example of gaze maps computed with different kinds of

stationary and motion merging modes. a Original #41. b Gaze map

superimposed to the image. c Video saliency map superimposed to the

image. d Subjective gaze map. e Mean. f Max. g Multiplication.

h Linear combination

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 20 Example of gaze maps computed with different kinds of

stationary and motion merging modes. a Original #91. b Gaze map

superimposed to the image. c Video saliency map superimposed to the

image. d Subjective gaze map. e Mean. f Max. g Multiplication.

h Linear combination
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the two main shortcomings of the GVBS model is that face

or background are not considered in this model. However,

gaze maps computed during our subjective experiment

show that it is important to pay more attention on face or

head instead of all the body of people. Figure 25 shows

effectively that the saliency model proposed in this paper

gives better results than the GBVS model and that the

saliency maps computed with our model are closer to gaze

maps. This is not surprising, as strong motion cues are not

present in our study. During periods of rather still video

content, color, intensity and orientation are better

predictors of saliency than motion, which essentially yiel-

ded no output during these periods [50]. Likewise, color,

intensity, and orientation are better predictors of saliency

than motion for quasi-stable background regions in sur-

veillance videos. We did not do a systematic comparison of

our model with other saliency models because as indicated

in the introduction these models are not comparable to our

model from a theoretical point of view. Thus, human eye

fixation data used by Itti et al. [15, 50] for dynamic scenes

cannot be employed to analyze the performance of our

model as the proposed model has been developed for

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 21 Effect of the Gaussian weight in Eq. (15). a Original frame.

b Video saliency map superimposed to the image. c Saliency map

computed with center-surround weight. d Saliency map computed

without center-surround weight (i.e. wi = 1). e original frame.

f Video saliency map superimposed to the image. g Saliency map

computed with center-surround weight. h Saliency map computed

without center-surround weight (i.e. wi = 1)

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 22 Effect of parameter a in Eq. (15). a Gaze map of Fig. 21a.

b Saliency map computed with a = 3/7. c Saliency map computed

with a = 1. d Saliency map computed with a = 0. e Gaze map of

Fig. 21e. f Saliency map computed with a = 3/7. g Saliency map

computed with a = 1. h Saliency map computed with a = 0
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 23 Saliency maps

comparison between the

saliency model that we

proposed and the Itti’s,

frequency tuned, phase

spectrum and the GBVS

models. a Original #21. b Gaze

map superimposed to the image.

c Video Saliency map

superimposed to the image.

d Itti’s model. e Frequency-

tuned model. f Phase spectrum

model. g GBVS model. h Our

model. i Subjective gaze map

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 24 Another example of

comparison between different

saliency metrics. a Original

#273. b Gaze map

superimposed to the image.

c Video saliency map

superimposed to the image.

d Itti’s model. e Frequency-

tuned model. f Phase spectrum

model. g GBVS model. h Our

model. i Subjective gaze map
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surveillance videos where the background is quasi-static

and salient moving objects moves continuously.

Quantitative Comparison of Saliency Maps

Besides subjective comparison, various objective criteria

can be used for the comparison of saliency maps such as

distance metrics and ROC [49, 51]. We use the Normalized

Scan path Saliency (NSS) to estimate the overlapping rate

between gaze map and saliency map as in [9, 52]. The NSS

of kth frame is defined as follows:

NSSðkÞ¼
X

x;y

GV x;y;kð Þ�SVmðx;y;kÞ�SVmðx;y;kÞ
� �

dSVmðx;y;kÞ

0
@

1
A

ð23Þ

where GV x; y; kð Þ, the value of the subjective gaze map of

the frame k normalized to obtain unit mean and

(a)

(b)

(c)

(d)

(e)

Fig. 25 Comparison of saliency maps computed from the GBVS

video saliency detecting model and our proposed model. a Original

frames: #7, #42, #108 and #190. b Gaze map superimposed onto the

original frames: #7, #42, #108 and #190. c Subjective gaze maps for

frames: #7, #42, #108 and #190. d Saliency maps computed with the

GBVS Model. e Saliency maps computed with the proposed saliency

map model
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SVmðx; y; kÞ, the value of the video saliency map, computed

at pixel of coordinates (x,y) for the frame k, normalized

according a scale ranked from 0 (no saliency) to 1 (highest

saliency).dSVmðx;y;kÞ represents the standard square error of

saliency maps computed from every frame.

The NSS has been computed for each frame of each

videos used for this study. The mean NSS value is a

standard score criteria which expresses the divergence of

the subjective gaze maps from the mean saliency maps in

function of the standard deviations of the video saliency

model. This criterion was especially designed to study eye

movement data and so, the corresponding results can be

easily interpreted [12]. The greater the value of the score is,

the greater the correspondence than would be expected by

chance between fixation locations and the salient points

predicted by the model is.

Besides the above subjective gaze map, another ran-

domized eye movement gaze map is also used to compare

the saliency map predicted by our model with different

saliency models. The randomized gaze map associates to

each frame of a video the fixation locations of observers

when they were looking at another video clip. If a model

can correctly predict the fixation locations of eyes, the NSS

of subjective gaze maps and saliency maps should be high

meanwhile the NSS of randomized gaze maps and saliency

maps should be low at the same time.

As we have not real subjective randomized gaze map,

that would mean we should observe two video sequences at

the same time in subjective experiments, one way is to use

a random function to generate randomized gaze map;

another way is to use the useless or irrelevant gaze map as

randomized gaze map instead of random array generated

by random functions as in [53]. Examples of unacceptable

gaze map are illustrated in Fig. 26. The content of frames

shown in Fig. 26 is considered as unacceptable to compare

the saliency map predicted by our model with different

saliency models as: in Fig. 26a the image is too blur and

the motion of the butterfly is not salient consequently

moving vector fields are useless, in Fig. 26c some people

are seen from behind so features based on skin hue are

useless. The reader might think that we have implemented

a rather extreme operation. But a little thought illustrates

this is not the case. As we say above, the NSS of subjective

gaze maps and saliency maps should be high meanwhile

the NSS of randomized gaze maps and saliency maps

should be low at the same time. Being more restrictive on

the number of acceptable gaze maps, we penalize more the

NSS score of our saliency model but we strengthen the

accuracy of our saliency model.

Normally, NSS value is higher for real gaze maps than

for randomized generated gaze maps or irrelevant gaze

maps. NSS value on randomized generated gaze maps

should be the smallest. The closer saliency map and gaze

map are, the better the performance of the saliency model

is. The higher the difference between NSS value computed

from real gaze maps and NSS value computed from irrel-

evant gaze maps or randomized generated gaze maps is, the

better the performance of the saliency model is.

Table 1 gives out some data about NSS with real gaze

maps or randomized gaze maps. Once again for compari-

son purpose, we have considered five saliency maps

derived from different weights merging methods for sta-

tionary saliency map and motion saliency map. We found

similar results using a variety of different metrics (ROC,

Earth Mover’s Distance, Kullback–Leibler Distance, etc.).

The method with center-surround weight (SVG
) gets the best

performance compared with other merging modes.

Table 1 also shows that HVS trends to focus on the

object moving into the center of insight window instead of

those far away from the center.

(a) (b) (c) (d)

Fig. 26 Examples of unacceptable gaze map to compare the saliency

map predicted by our model with different saliency models. As the

content of the original frames cannot be exploited by our approach the

gaze maps of these frames has been used as randomized gaze map.

a Original frame. b Corresponding gaze map with a weight of 0 for

CF (see Eq. 10). c Original frame. d Corresponding gaze map

Table 1 Gaze map and saliency map comparison

Criteria Fuse mode

SVmulti
SVmax

SVmean
SVG

NSS on real gaze maps 0.717 1.0256 1.045 1.1815

NSS on randomized generated

gaze maps

0.0002 0.0002 0.0002 0.0002

NSS on irrelevant gaze maps 0.3998 0.5972 0.7587 0.5069
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We have also compared our result with other saliency

detection algorithms including Itti’s model, frequency-

tuned saliency detection and phase spectrum saliency as

shown in Table 2. As there is no standard visual saliency

model for surveillance video, here the motion saliency map

used in [10] and GBVS [49] were used for results

comparison.

If the saliency maps computed with the proposed model

were much close to gaze maps, NSS on real gaze maps

should be higher than the two other NSS values and the

differences between NSS on real gaze maps and the two

other NSS values should be also higher than those com-

puted with other models. From data in Table 2, we show

that NSS on real gaze maps computed with our proposed

model is far higher than that of other stationary models

such as Itti’s, frequency tuned and phase spectrum, and that

NSS values are quit similar on randomized generated gaze

map. The models considering inter-frame information,

such as the motion saliency model [10], the GBVS model

[49] and our model, show higher NSS values on real gaze

maps than the stationary models. That confirms that the

motion information and the inter-frame information play

important role for detecting saliency in video. Let us also

note that NSS on real gaze maps computed with the motion

saliency model [10] are much lower than that computed

with the GBVS model or our model. The reason for that

may be due to video sequences used in this study and to the

motion saliency model used, as this latter is based on the

computation of motion vectors from block match motion

estimation in mpeg2 without considering background or

foreground. Indeed low quality recorded video can defi-

nitely decrease the precision of motion vectors and then

further decrease the precision of the saliency map.

Furthermore, we can also note that the NSS values in

Table 2 on irrelevant gaze maps are higher with the motion

saliency model, the GBVS model and our model than with

stationary methods. At the same time, we can note that all

the NSS values on irrelevant gaze maps in Table 1 are high

meanwhile the corresponding NSS values on randomized

generated gaze maps are very low. Here, we can do some

interpretations with reference to Fig. 26a, c which have

been considered irrelevant and which have a very different

content. If we look at their gaze map, we can see that

observers focus, as for any video, on the center part of

video frames no matter what kinds of video they are

looking for. Therefore, the probability that a gaze map

emerges in the center of a frame is very high. This should

not happen with randomized generated gaze maps since

these latter are based on a random function. That explains

why NSS values are higher on irrelevant gaze maps.

Conclusion

In this paper, a new spatiotemporal saliency detection

algorithm for video surveillance is proposed. With the

knowledge of scene content, background generation and

foreground objects extraction are analyzed, and then multi-

features including high level feature such as face and other

low level feature including color, orientation and intensity

have been used to compute stationary feature conspicuity

maps. Motion saliency map is based on the motion vector

analysis. Motion saliency map and stationary saliency map

are then merged with Gaussian distance weights. We have

compared saliency maps predicted by the proposed model

with gaze maps of surveillance videos obtained by sub-

jective experiments. Comparing to previous work, we show

that our multi-feature-based video saliency detection model

gives a closer correspondence to gaze map. The objective

of this paper was to further investigate the effect of several

spatiotemporal saliency features which are much correlated

to the human visual perception of saliency instead of

generating a new saliency detection model based only on a

computer vision approach without taking into account

cognitive computation. Under this objective perspective,

our results are very encouraging and show substantial

improvements.

It is also interesting to note the effect of the bottom-up

and top-down process set out here, based on the merging of

spatiotemporal saliency features, on the saliency detection.

Two embodiments of the main idea were presented or

suggested. The first, which serves to motivate the discus-

sion, is a reasonable heuristic approach that drives the

merging of spatiotemporal saliency features. The second,

Table 2 Comparison with different saliency models

Criteria Model

Phase

spectrum

Itti FT (frequency

tune)

Motion

Saliency [10]

GBVS (video

saliency [49])

Proposed

method

NSS on real gaze maps 0.0018 0.0657 0.1598 0.453 0.7115 1.1815

NSS on randomized generated

gaze maps

0 0.0001 0.0002 0.0001 0.0001 0.0002

NSS on irrelevant gaze maps 0.0079 0.1563 0.1276 0.6127 0.6211 0.5069
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an optimization-based approach, casts the foundations to

extend the saliency detection approach to other categories

of targets than people and to develop an online saliency

detection process based on a multiple instance learning

approach. That is, with many possible targets, different

observers may orient toward different locations, making

saliency model more difficult for a simple metric to

accurately predict all observers [26]. In that case, as sug-

gested in [26], dynamic metrics should be used to improve

more steeply, indicating that stimuli which more reliably

attracted all observers carried more saliency.

In this paper, we have mainly considered surveillance

videos with quasi-stable background. In the next step, we

will focus on more complicated scene where background

and foreground objects are both moving. More refined

algorithm should be necessary to get the suitable fore-

ground objects for saliency analysis. Unfortunately, the

current binary tree search actually used for extracting

background pixel could not be used as it requires too much

computational power. Therefore, both neighborhood

information and multi-scale technique will be explored for

optimization. Lastly, the merging mode of stationary sal-

iency and motion saliency might be further improved by

considering other information such as saliency history. Our

model opens new perspectives for more sophisticated

models and experimental scenarios. which are enough

simple to ensure that the bottom-up saliency map may be

used as a mask, highlighting a set of potentially interesting

locations in the scene, with top-down influences mainly

responsible for deciding upon one specific location among

saccade target locations [50].
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6. Cerf M, Harel J, Einhäuser W, Koch C. Predicting human gaze

using low-level saliency combined with face detection. In Platt

JC, Koller D, Singer Y, Roweis S, editors. Adv Neural Inf Pro-

cess Syst 2007;20.

7. Li L-J, Fei-Fei L. What, where and who? Classifying event by

scene and object recognition. IEEE Int Conf Comput Vis (ICCV);

2007.

8. Scassellati B. Theory of mind for a humanoid robot. Autonom

Robots. 2002;12(1):13–24.

9. Marat S, Ho Phuoc T. Spatio-temporal saliency model to predict

eye movements in video free viewing. 16th European Signal

Processing Conference EUSIPCO-2008, Lausanne: Suisse; 2008.

10. Ma Y, Zhang H. A model of motion attention for video skim-

ming. Proceedings of IEEE, ICIP, Vol. 1, pp. 22–25; 2002.

11. Shan L, Lee MC. Fast visual tracking using motion saliency in

video. Proceedings of IEEE, ICASSP. Vol. 1, pp. 1073–1076; 2007.

12. Peters RJ, Itti L. Beyond bottom-up: incorporating task-depen-

dent influences into a computational model of spatial attention.

In: Proceedings of IEEE, CVPR; 2007, p. 1–8.
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