Mining Spatiotemporal Patterns in Dynamic Plane Graphs

Adriana Prado 1, 2 Baptiste Jeudy 2 Elisa Fromont 2 Fabien Diot 2
1 DM2L - Data Mining and Machine Learning
LIRIS - Laboratoire d'InfoRmatique en Image et Systèmes d'information
Abstract : Dynamic graph mining is the task of searching for subgraph patterns that capture the evolution of a dynamic graph. In this paper, we are interested in mining dynamic graphs applied to videos. A video can be regarded as a dynamic graph, whose evolution over time is represented by a series of plane graphs, one graph for each video frame. As such, subgraph patterns in this series may correspond to objects that frequently appear in the video. Furthermore, by associating spatial information to each of the nodes in these graphs, it becomes possible to track a given object through the video in question. We present, in this paper, two plane graph mining algorithms, called \plagram{} and \dyplagram{}, for the extraction of spatiotemporal patterns. A spatiotemporal pattern is a set of occurrences of a given subgraph pattern which are not too far apart w.r.t time nor space. Experiments demonstrate that our algorithms are effective even in contexts where general-purpose algorithms would not provide the complete set of frequent subgraphs. We also show that they give promising results when applied to object tracking in videos.
Type de document :
Article dans une revue
Intelligent Data Analysis, IOS Press, 2013, 17 (1), pp.71-92
Liste complète des métadonnées

https://hal-ujm.archives-ouvertes.fr/ujm-00629121
Contributeur : Baptiste Jeudy <>
Soumis le : mercredi 5 octobre 2011 - 10:18:52
Dernière modification le : jeudi 19 avril 2018 - 14:38:06

Identifiants

  • HAL Id : ujm-00629121, version 1

Citation

Adriana Prado, Baptiste Jeudy, Elisa Fromont, Fabien Diot. Mining Spatiotemporal Patterns in Dynamic Plane Graphs. Intelligent Data Analysis, IOS Press, 2013, 17 (1), pp.71-92. 〈ujm-00629121〉

Partager

Métriques

Consultations de la notice

238