G. R. Bradski, D. Comaniciu, and P. Meer, Computer Vision Face Tracking for Use in a Perceptual User Interface Mean Shift: A Robust Approach Toward Feature Space Analysis Tracking based on Hue-Saturation Features with a Miniaturized Active Vision System, Proceedings Book of 40th International Symposium on Robotics, Asociación Española de Robótica y Automatización Tecnologías de la Producción ? AER-ATP, pp.13-27, 1998.

G. Tian, R. Hu, Z. Wang, Y. Fu, G. Bradski et al., Improved Object Tracking Algorithm Based on New HSV Color Probability Model Learning OpenCV: Computer Vision with the OpenCV Library, Proceedings of the 6th international Symposium on Neural Networks: Advances in Neural Networks -Part II, 2008.

J. G. Allen, R. Y. Xu, and J. S. Jin, Object tracking using camshift algorithm and multiple quantized feature spaces Robust Object Tracking using Joint Color-Texture Histogram, Proceedings of the Pan-Sydney area workshop on Visual information processing, ser. ACM International Conference Proceeding Series, pp.3-7, 2004.

X. Qiu, S. Liu, and F. Liu, Kernel-based target tracking with multiple features fusion, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference, 2009.
DOI : 10.1109/CDC.2009.5399515

A. Ganoun, N. Ould-dris, R. Canals, R. Stolkin, I. Florescu et al., Tracking System Using CAMSHIFT and Feature Points Efficient Visual Servoing with the ABCshift Tracking Algorithm, 14th European Signal Processing Conference IEEE International Conference on Robotics and Automation, pp.3219-3224, 2006.

R. Xu, . Allen, and J. S. Jin, Robust real-time tracking of nonrigid objects, Conferences in Research and Practice in Information Technology, VIP'03, 2003.

K. Fukunaga, L. D. Hostetler-]-r, R. E. Gonzalez, S. L. Woods, R. Eddins et al., The estimation of the gradient of a density function, with applications in pattern recognition, IEEE Transactions on Information Theory, vol.21, issue.1, pp.32-40, 1975.
DOI : 10.1109/TIT.1975.1055330