Numerical study of femtosecond laser-assisted atom probe tomography

Abstract : We investigate the mechanisms of laser-assisted atom probe tomography technique. In this method, a sub-wavelength tip is subjected both to a very strong static electric field and to a femtosecond laser pulse. As a result, ions are ejected from the tip one by one. By using femtosecond lasers, one can analyze not only metals but also semiconductors and dielectric materials. To better understand the ejection process, a numerical model is developed based on the drift-diffusion approach. The model accounts for such effects as field penetration, hole and electron movement, and laser absorption. For the given value of the dc field, a substantial band bending and an increase in hole density at the surface of silicon tip are observed. This bending effect changes silicon absorption coefficient at the surface and significantly increases recombination time of laser-induced carriers.
Document type :
Conference papers
Complete list of metadatas

https://hal-ujm.archives-ouvertes.fr/ujm-00710834
Contributor : Tatiana Itina <>
Submitted on : Thursday, June 21, 2012 - 4:35:10 PM
Last modification on : Thursday, May 16, 2019 - 3:58:13 PM

Identifiers

  • HAL Id : ujm-00710834, version 1

Citation

Elena Silaeva, N. Shcheblanov, Tatiana Itina, Angela Vella, N. Sévelin-Radiguet, et al.. Numerical study of femtosecond laser-assisted atom probe tomography. 11th International Conference on Laser Ablation, Nov 2011, Playa del Carmen, Mexico. pp.133. ⟨ujm-00710834⟩

Share

Metrics

Record views

136