Optical security device for document protection using plasmon resonant transmission through a thin corrugated metallic film embedded in a plastic foil

Abstract : The well known resonant or extraordinary transmission through an undulated metallic thin film embedded in a dielectric layer using the Plasmon modes excitation under normal incidence is industrially exploited for document protection applications. While the effect is very spectrally sensitive to the incidence angle in collinear incidence since it leads to a transmission peak separation in two peaks, it is very tolerant in conical incidence (incidence angle in the plan normal to the grating direction). This property is used to create color transmission effects by playing with the sample rotation in the two directions to enhance the contrast of such effect. Theoretical approach, modeling and experimental demonstration in the visible range on a flexible plastic foil are presented for a see-through window implemented in document security.
Document type :
Journal articles
Complete list of metadatas

https://hal-ujm.archives-ouvertes.fr/ujm-00797627
Contributor : Yves Jourlin <>
Submitted on : Wednesday, March 6, 2013 - 5:58:51 PM
Last modification on : Wednesday, July 25, 2018 - 2:05:31 PM

Links full text

Identifiers

Collections

Citation

Jean Sauvage-Vincent, S. Tonchev, C. Veillas, Yves Jourlin. Optical security device for document protection using plasmon resonant transmission through a thin corrugated metallic film embedded in a plastic foil. Journal of the European Optical Society : Rapid publications, European Optical Society, 2013, 8 (13015), pp.13015-1;13015-6. ⟨10.2971/jeos.2013.13015⟩. ⟨ujm-00797627⟩

Share

Metrics

Record views

270