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Exploiting patch similarity for SAR image processing:
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~ Abstract—Most current SAR systems offer high-resolution structures, and ne textures. The point is that multilooking
images featuring polarimetric, interferometric, multi-frequency, is just a basic non-adaptive form of parameter estimation: to

multi-angle, or multi-date information. SAR images however Kl ithout d di feat | i
suffer from strong uctuations due to the speckle phenomenon I€IMOVE SPECKIE WIMOLIL degrading neieailres, iocal image

inherent to coherent imagery. Hence, all derived parameters content must be taken into account.
display strong signal-dependent variance, preventing the full  The design of ef cient despeckling lters is a long-standing

exploitation of such a wealth of information. Even with the problem that has been the object of intense research since the

abundance of despeckling techniques proposed these last three;yyent of SAR technology [2], with rst contributions dating
decades, there is still a pressing need for new methods that can ’

handle this variety of SAR products and ef ciently eliminate b_ack to the 8_05 [3]. However, resea_mh activity has accelerated
speckle without sacri cing the spatial resolution. Recently, patch- Signi cantly in recent years, re ecting both the success of

based ltering has emerged as a highly successful concept in SAR remote sensing in general and the lack of satisfactory
image processing. By exploiting the redundancy between similar methods for resolution-preserving speckle reduction. Some of
patches, it succeeds in suppressing most of the noise Withihe most successful methods proposed in the recent past for

good preservation of texture and thin structures. Extensions of | v adati timati b d . dels that
patch-based methods to speckle reduction and joint exploitation 'OCally adaptive estimalion aré based on image models tha

of multi-channel SAR images (interferometric, polarimetric, or €nforce strong regularity constraints, either in the original
PoliInSAR data) have led to the best denoising performance in domain (e.g., Markov random elds [4]), or in some transform
radar imaging to date. We give a comprehensive survey of patch- domain (e.g., wavelet-based sparse representations [5]).
based nonlocal ltering of SAR images, focusing on the tWo  ysry recentlypatchesi.e., small rectangular image regions
main ingredients of the methods: measuring patch similarity, . .
and estimating the parameters of interest from a collection of (typically squares of size betweeh _3 and 11_ 11), haye .
similar patches. emerged as a powerful representation on which to build rich
and exible statistical models of natural images. Patches
capture richer neighborhood con gurations than rst-order
|. INTRODUCTION Markov random elds and are better localized than wavelets.
Current SAR systems share two common characteristi¢gtch-based models do not enforce the solution to belong to
they provide a wealth of information thanks to polarimetrica restricted class of signals, such as signals with bounded
wavelength or angle diversity, and they offer very high spatighriations or with sparse transform coef cients. They exploit
resolutions that give access to the shape of man-made stifer self-similarity, typical of natural scenes, and look for
tures. In radar images, however, parameters of interest, lienilar patches not just in the immediate neighborhood of the
interferometric phase, coherence, polarimetric properties, t@fget pixel but in an extended search area. Unlike a local
radiometry, are not directly accessible but must be estimatethod like [6] that considers only connected pixels, far apart
from unreliable data. It is essential that the estimation procgixels can be combined, thereby justifying the widespread
dure be robust to the strong uctuations in the measuremenmignlocal appellative. The evolution from explicit image mod-
due to speckle without trading off the spatial resolution.  els to the concept of patch redundancy corresponds to a true
The simplest way to reduce speckle néise to average methodological shifin image processing. In particular, recent
pixels in a rectangular window around the target pixel, s@tenoising methods most often rely on the notion of a patch.
called spatial multilooking This process, already present in |nterestingly, the concept of nonlocal ltering originally
the rst ERS satellite images and still widely used for interemerged in image processing after the pioneering work of
ferometric or polarimetric data, leads to a uniform reductionee [7] for SAR despeckling. However, it was only with
of speckle in homogeneous areas, with a residual variange development of patch-based methods, following the sem-
inversely proportional to the number of pixels averaged. Howhal work [8] in the 2000s, and the de nition of highly
ever, by potentially mixing different signals, it also impairgiiscriminative patch-based similarity measures, that nonlocal
such important signal features as region edges, man-mag&ing could be successfully applied to the low-SNR speckle-

This work has been supported in part by the following grants: ANR DElﬁor.rUpt?d S.AR '”.’ages' The par§d|gm of pat_ch-based nonlpcal
09-EMER-008-01, ANR-11-IDEX-0007, ANR-11-LABX-0063, and MIUR- €stimation is particularly interesting for SAR image processing
PRIN 2012: “Telerilevamento a risoluzione spaziale e spettrale molto elevagiiven the poor t of classical models to SAR scenes, charac-

un nuovo sistema integrato di analisi dei datr”. = _ terized by many very strong punctual targets and high-contrast
Although speckle is itself a signal of possible interest, in the context of,

despeckling it is an undesired component, and hence customarily referre@gé"cwres that are poorly modeled with piecewise constants or
“noise” with a slight abuse of terminology [1] wavelets.
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SAR IMAGING MODALITIES theory: Lee [3] proposed a minimum mean square error
Synthetic Aperture Radar systems are based on the emission of an gle@§timator in the class of linear lters, while Lopes et al. [16]

magnetic wave which is then back-scattered by the ground level features, and. _. . . .
nally recorded by the receiving antenna. Several modalities are used in S,gig)nsmered the maximura posteriori estimator. Both works

imaging (see [15] for a comprehensive survey): used a statistical model limited to local distributions, and it is
amplitude: The simplest con guration provides, after SAR synthesis, aworth noting that these two Iters were popular because of the
image of scattering coefcientk that are complex values with |a o|ayer analysis of the local context, using window splitting, or

magnitude (i.e., amplitude) that is representative of the radar cross . . .
section. The square magnitude (i.e., intensity) is also often consider€§19€ and target detection [16]. The idea of selecting the most

polarimetric: The use of different polarizations at emission and receptiorelevant samples in the window has been further developed
of the radar wave provides a deeper insight into the backscattering [6] and is the main motivation of patch-based approaches.

mechanisms inside the resolution cell. The scattering vektois . . . .
formed by the complex values corresponding to each combination &€ following generation of lItering approaches introduced

emission / reception polarizations. Usually, horizontal (H) and verficgitronger priors to guide the solution.
(V) polarizations are used for emission and reception providing the o (gt family includes Markovian and variational ap-

scattering vectok = [zpn ;ZHv ;Zvh ;2Zvv ]t (or, by reciprocity, . . . .
K = [2un :2mv i2vy ]). This modality (POISAR) is widely used to Proaches Wh_|ch impose smoo_thness or regularity constraints
study vegetation growing or urban areas. on the solution through a suitable prior model. These ap-

interferometric: The combination of two backscattered signkls and k » roaches usuaIIy lead to minimizing an energy function com-
measured by two close con gurations of the acquisition systems can L. .
yield elevation information or ground displacement maps. In interfeposed of two terms. The rst term re ects the data distribution
ometric con gurations, a composite signkl can be de ned by the¢ and is related to statistical models of speckle (see the box
concatenation of the two received signls: [ k};kL]'. These can be “Speckle uctuations in radar images”). Due to the heavy

single (INSAR) or multi-polarization (PolinSAR) signals. . L. . . .
gle ( ) P ( ) sig tail of the distributions of speckle-corrupted images, classical

. . . . . least-squares data tting must be replaced by a more relevant
The potential of this new paradigm for SAR imaging hagr'terion derived from speckle distributions. The second term

quickly been recognized, with more than 30 papers IOlJbIIShre(aies on some prior on the solution. Although regularization

since 2009 that describe patch-based methods apIOIidegdels such as gradient sparsity have been investigated [4]
SAR, including most state-of-the-art despeckling techniqu 9 P y 9 '

S . . i
[9], [10], [11]. In addition, nonlocal patch-based methods arﬁ1ey d_o not t well SAR signal properties. The _Markowan
verv exible and can readilv be extended to different SA ormalism can be easily extended to deal with different SAR

Y y modalities like interferometric data. However, the specic

modglmes [12], [1;3]' [14] N .. nature of SAR signals is poorly captured by simple models and
This paper reviews the underlying ideas and principles AP
N . : . more complex ones lead to very hard optimization problems.

of nonlocal estimation methods proposed in SAR imagin

g. ) .
We consider despeckling as a familiar and important ca, eA second large family of_approgches IS pased on wave_let
. -fransforms. Thanks to their spatially localized and multi-
study, but we also address the more general point of view . . . g
o . . resolution basis functions, wavelets yield sparse yet accurate

of parameter estimation, looking ahead at extensions to mare . . . :
representations of natural images in the transform domain.

challenging SAR modalities and estimation problems. Befogenarp discontinuities and point-like features, so common in

diving into the core of patch-based methods, we begin @/ R images, are well described by a small number of basis

describing the classical speckle model in SAR imaging aI?Ud’]CtionS, just like the large homogeneous regions between

the major families of estimation methods that have emergian Thi : ick] ed
these last 3 decades. em. This compact representation was quickly recognize
as a powerful tool for denoising. In fact, while the signal
is projected on a relatively small humber of large wavelet
Il. A SHORT OVERVIEW OFSAR DESPECKLING coef cients, the white noise remains white after the trans-
Depending on the modality, SAR systems can record @igrm, and hence evenly distributed on all coef cients. Signal
to 6 channels of complex valued signals (see box “SA&nd noise can be, therefore, ef ciently separated by means
imaging modalities”). All these signals present highly varyingf an appropriate non-linear processing, such as hard/soft
uctuations because SAR is eoherentimaging system (see thresholding or more sophisticated shrinkages. The encour-
box “Speckle uctuations in radar images”). The simpleshging results provided by early SAR despeckling techniques
way to reduce these uctuations and estimate the values sfawned an intense research to overcome the shortfalls of
the physical parameters is to average several independswit/hard thresholding. A popular approach considered wavelet
samples from the data. This operation, called multi-lookinghrinkage as a Bayesian estimation problem, possibly ex-
was applied in various forms from the very beginning gbressed after application of a homomorphic transform in order
the SAR era. However, such simple averaging that applies reduce speckle to an independent additive perturbation.
equally to every region of the image, regardless of the locBhe major problem in this context becomes the modeling
heterogeneity, strongly degrades the spatial resolution. of signal and noise by suitable distributions, and a number
Improved approaches have long been proposed to enhaaotg@arametric models have indeed been proposed [5], [17].
this basic estimation method by better taking into account tRerther improvements come frojpint modeling of wavelet
image information. Many efforts have been devoted to thmef cients in and across subbands, like in [18]. Despite its
case of amplitude images, corresponding to the modulus paftential, the wavelet transform cannot deal by itself with
single polarization data. Most of these *“ Itering” methods ar¢he high heterogeneity of SAR scenes. A number of spatially
described in the review paper [2], and the very recent tutoriatlaptive techniques were therefore proposed, based on some
[1]. The rst attempts were derived according to estimatioprior classi cation of the image, typically in homogeneous,
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SPECKLE FLUCTUATIONS IN RADAR IMAGES

Coherent signals like SAR data present strong uctuations. The wavés the more general case oKa-dimensional scattering vector as encountered
backscattered by elementary scatterers inside each resolution cell are inopolarimetric and interferometric modalitids = [z1;:::;zk ]!, the
“in phase” but arbitrarily “out-of-phase”, which results in constructive andbserved complex vectok follows a K -dimensional circular complex
destructive interferences. In a SAR intensity image, uctuations due tGaussian distribution under Goodman's fully developped speckle mogdel
speckle follow a heavy tail distribution (large deviations occur often) angvalid for untextured areas with physically homogeneous and rough surfaces):
are signal dependent (standard deviation is proportional to the radiometry),

which departs from the usual additive Gaussian noise model: p(kj )=

y 1
K] jexp k k 3)

image noiseless image  exponenti

where = EfkkYgisaK K complex covariance matrix characteristig
of the imaged surface is the expectation, and the hermitian transpose.

Some radar images are not available in the form of scattering vectors, |but
rather as empirical covariance matrices:

Additive white Gaussian noise vs Multiplicative speckle noise
Measured SAR intensity > 0 in untextured areas deviates from the 1% y
radiometryR > 0 according to an exponentlial distribution: C= T kiki; C)]
. i=1
IjR) = —ex —): 1
PUJR) = ~exp( =) )

where the sum is carried over several scattering vectors for each pixel. In/the
Multi-look SAR images, obtained by averagihgintensity images, follow case of amplitude imagek, is a scalar andC corresponds to ah -looks

a gamma distribution: intensity image.
) L bt 2 LI The empirical covarianc€ follows a Wishart distribution given by:
p(ljR) = = exp —— )
R (L) R LLK jcjt K
., pICj ;L)= ——=——exp L T( 'C) ; ®)
k (L) ]

whereTr( ) is the matrix trace. The equivalent number of lodksacts as
the shape parameter of the Wishart distribution.

1

heterogeneous (e.g., textures) and highly heterogeneous (elgnoising, with predictor weights depending not only on their
point targets) regions, in order to tune ltering parameters @patial distance from the target, but also on their similarity
strategies to the different regions [19]. with it, measured by the difference between observed values.
The approaches reviewed above generally try to estimddespite its simplicity, this Iter gave a surprisingly good
the signal at a certain pixel from the noisy observations dénoising performance, reducing the annoying edge smearing
pixels close to it. However, with plenty of data to estimatphenomenon. However, the pixel-wise estimation of similarity
the signal, that is, the observations over the whole imageas very rough, and happened to reinforce observed values
why restricting attention only to a small neighborhood ddiffected by strong noise, justifying the need for the spatial-
the target? The obvious answer is that not all image pixalsstance term. The fundamental step towards nonlocal Itering
carry valuable information on the target, and only close pixelgas then the introduction, in NL-means [8], ofediable patch-
are used because they are expected to be more similar tavise measure of similarity. When a relatively large patch is
and hence, better estimators. The above consideration mateé®n into account, it is very unlikely that pixels characterized
clear that the image denoising problem may be performedby a signal much different from the target be accepted as
two separate step$) selecting good predictors, which carrygood predictors. Thanks to the improved reliability, predictors
useful information on the target, and thép using them to can be weighted basezhly on similarity, with no reference
perform the actual estimate. Lacking any other hints, spattal spatial information. Unlike local Iters, non-local ones
closeness is taken as a surrogate of signal similarity relyidg not impose any speci ¢ structure (connectivity, shape) or
heavily on the fact that natural images are predominantly lowmoothness, but only exploit that patches recur more or less
pass. Needless to say, sophisticated Iters go much beydinequently, aself-similarity property common to most images.
a simple distance-based weighting of contributions, but thRecurring patches are easily found in smooth regions, but just
basic criterion remains a founding paradigm of local lters. as well around region boundaries, textures, arti cial structures,
The patch-based nonlocal approach avoids the potentiadiic., as shown in Fig.1. Hence, for most patches, several
dangerous identi cation between closeness and similarity anther patches can be found with similar content. This form
goes back to the original problem, trying to identify the pixelef stationarity in the space of patches is central to nonlocal
more similar to the target, irrespective (to a certain extent) approaches.
their spatial distance from it. In next Section we explore in

more depth the fundamental steps involved in nonlocal gaR Nonlocal estimation methods generally follow a three-step
despeckling and review the current state of the art scheme, summarized in the box “Nonlocal estimation in ac-

tion”, with many possible variations at each step and, possibly,
pre-processing steps and/or iterative re nement of results by
repeated nonlocal estimations. The rst step identi es similar
patches (patch size is generally set frABm3to 11 11 pixels).

At the core of the nonlocal approach stands the selectionlofmust reliably nd, within an extended search window
suitable predictors based on their similarity with the target. (typically 21 21 to 39 39), patches that are close to

This idea began to gain some popularity with the bilateréthe reference central patch. Once several patches have been
Iter, proposed for additive white Gaussian noise (AWGN}elected (from a few tens to all the hundreds of patches within

IIl. NONLOCAL APPROACHES EXPLOITING PATCH
REDUNDANCY
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NONLOCAL ESTIMATION IN ACTION : PROCESSING AT PIXEL X
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the search window), they are assigned relative weights. Taed has been the object of several recent papers. One has to
second step combines patches, according to their weightederstand the foundation of such Iters, and provide a exible
to form an estimate of either the central pixel, the centrédrmulation suitable for different modalities and models of
patch, or all selected patches. The estimates computed froaise. In the following, we focus on the main concepts that
all possible reference patches are then merged in a last dtepe been proposed in SAR imaging, and try to provide some
to produce the nal image. insight into the problems that emerge when noise departs from
We now illustrate these steps for the special case of Nthe Gaussian distribution, and possible solutions to them. The
means [8], indicating by(x) andv(x), respectively, the value key point of all these extensions is the consideration of the
at pixel x, and the image patch centerediin the observed speci c distributions of radar data.
image. In NL-means, each pixel in a large search area

around the target pixed is considered and a similarity Measur&ye, 1: Pe ning patch similarities — The rst step of nonlo-

( xx9 isOcomputed by comparing the two patches centergd| ostimation methods is the identi cation of similar patches
onx andx”. Under AWGN, the sum of squared differences ig, . gh a (dis)similarity criterion( x:x%. This criterion

a natural criterion to evaluate similarity: guanti es, in a principled manner, by how much the unknown

( x;x9 = kv(xy v(x)k?: (6) Patchesu(x) andu(x9) differ. Based on the similarity to the
reference patch at, predictor patches at° can be eithesoft-
This measure is used to compute the weight for each predic‘g,grsignedor hard-assignedto the set of similar patches. In
pixel x° with large weights associated with similar patches anfe case of soft-assignment, a weight re ecting the level of
negligible weights with dissimilar ones. An exponential kern&limijarity is associated to each patch within the search area,
is used to this end: otherwise the most similar patches are included and used to
wix;x9) =exp( ( x;x%=h) : @) perform the prediction.

Under AWG noise, (6) is a natural criterion to evaluate sim-
ilarity between two patches. Fluctuations created by speckle
are multiplicative and non-Gaussian, see the box “Speckle

uctuations in radar images”. Speci c criteria must be derived
WG XYv(x9) | ®) for the comparison of patches in SAR imaging.

xo W(X; X9 The similarity between two patches is generally de ned as

whereb denotes an estimate of the unknown signal value the sum of the similarity of each pair of gprresponding
In the NL-means, therefore, only one estimate is obtain@iels in the two noisy patches( x;x9) = (v(x +

for each pixelk, which corresponds to the top branch depicted); V(x°+ )). In order to improve the discrimination power

in the box “Nonlocal estimation in action”. Generalization®f the similarity criterion, several authors suggest using a

provide several estimates for each pixel that must be propePfig-estimatee computed either over the whole patch [20],

with the bandwidth parametér governing the weight dis-
tribution. Finally, the target pixex is estimated through the
weighted average of all |gixels within the search area:

bt (x) =

combined in the last step. obtained after a rst iteration [11] or at the previous iteration
The NL-means lter and its numerous variants are known #§] of the nonlogal method. The soimilarity then takes the
perform well under AWGN. However, the extension to SARorm: ( x;x9 = (e(x + );e(x’+ )). The following

imaging, and in particular to speckle, is by no means triviaparagraphs describe possible approaches to derive the pixel-
TR TR A RIRTATS Bk KGR WO e wise similarity .
.? Uy ‘i‘i;‘“ & »l At B T e _'ﬁ.) o e oR 'ﬁ

Detection approachk Dissimilarity can be de ned based on
the detection of the difference between the underlying values
u; andu; [21]. This detection problem can be formulated as

. '_ ) _ ) ] ' an hypothesis test where the null hypothesis corresponds to
Fig. 1. Typical fragments of SAR imageS1 51 pixels), from the left: a

homogeneous region, a line, a texture and a structure. For each target pgtgh_dlﬁerence Ko ui=uz=us2) and the al_tematlve one to
(green) several similaB 8 patches (red) are easily found in the samd difference Ki1: u; 6 u,). Among several criteria considered

fragment. in [21], the generalized likelihood ratio (GLR) is shown to
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perform best and full | several invariance properties: Estimation approach Lee et al [26] have shown that the
; ; estimation of radar properties may suffer from a systematic
su Viju Vaju
CR(v;v2) = log Py, [P(ValUso) P(V2lUz2)] (9) bias arising from the procedure that detects similar noisy

supy, [p(vaju) Isupy, [P(v2]u2)] values (hard-assignment). For SAR intensity images, they
Criteria specic to SAR imaging can be derived from (9suggest using a pre-selection rule of the fden? [Ry ;R 1 9
by using the statistical speckle models recalled in the boxcalled sigma range— for which the pre-selected samples
“Speckle uctuations in radar images”. Both single channel, do not introduce bias in the subsequent estimation when
(intensity) and multi-channel (polarimetric and/or interferothe radiometry is identicalR; = R,). Values of and ©
metric) con gurations lead to a criterion de ned as the logire computed by an iterative method, while the unknd®yn
of the ratio between arithmetic and geometric means [22]: js replaced by a pre-estimaf®, calleda priori mean [26],
LiC1+ Cyj [10]. By rather considering a pre-selection rule of the form
CR(C1;C2) =2L log P (10)  (14:12) , numerical integrations ovelr; and 1, show
IC1) 1C2] that the subsequent estimation is unbiased as soon as the rule
whereC may represent either thie-looks intensity (single- can be rewritten a, 2 [I1= ;11 ]. Detection rules such as
channel images) or thie-looks empirical covariance matricesGLR (10) verify this property.
(multi-channel images). This is a natural criterion to compatr
patches corrupted by a multiplicative noise such as spec
since the criterion is invariant to a multiplicative change of
contrast. It has been successfully used in nonlocal Itering he similarity ( x:x9 is mapped into a weight(x: x9

intensity, interferometric and polarimetric SAR images [12], . : i | di K s h
[14]. Detection-based criteria using similar expressions abé'ng a function .terme erne Many n‘fergnt ernels have
also at the heart of [9], [13], [23], [24]. een proposed in the literature, from simple thre;holdmg
w(x;x9 = 1[( x;x9 < h], exponential kernels as in (7),
Information approach- In line with the detection approach,to more sophisticated ones [20], [24], [14]. The shape of the
the authors of [9], [20] consider a similar hypothesis tegernel €.g, smooth, discontinuous or trapezoidal) changes
involving pre-estimates of the parameters. Good criteria the contributions of patches that may correspond to false
perform such a hypothesis test are provided by the detections and thus controls the bias / variance trade-off. In
divergences wherér and  refer to pre-de ned functions. [20], [14], suitable kernels have been de ned to guarantee the

The h- divergences measure the quantity of informatiogame bias / variance trade-off, irrespective of the modality, the
shared by the distributions parametrized éy and &;: they noise statistic or the patch size.

evaluate the proportion of samples from one distribution th
can be explained by the other. Specic choiceshofind
lead for instance to the Hellinger divergence or the Kullbac

me of the estimators used in the second step of nonlocal
stimation methods use the similarity x;x% in order to
eight the importance of the patetfx?) (i.e., soft-assigment).

t . . . .
gtep 2: Estimation of radar properties —After selection of a
tack of patches and/or computation of relative weights during

Leibler divergence. Again, taking into account speci c gaRNe rststep of the nonlocal estimation method, these patches

distributions provides well-founded criteria. The symmetric re comblneql n a_second_ stgp to form an_esnmate_of the
version of Kullback-Leibler divergence (sKL) gives, in theradar properties. This combination can be a simple (weighted)

case of Wishart-distributed empirical covariance matrices: averaging as in the NL—mea_ns, or a more evolved es_t|mator.
In SAR imaging, obssrvatlons may denote a collection of

sKLe;e,)=LTr(e, 1e2 + €, 1e1) + const.  (11) intensitiesl , amplitudes I or log-transformed valudsg(l ),
a vector of noisy coef cients in a transformed domain (DCT,
Fourier, wavelets...), a collection of scattering vectiorer
Geometric approackh The similarity can be de ned by de- of empirical covariance matricéS. The associated collection
riving a metric suitable to the specicities of SAR dataof parameters of interest, are generally the radiometrig
D'Hondt et al [25] suggest using Hermitian semi-de niteor covariance matrice . The estimation step computes radar
positive matrices and propose a metric connected to geodgsitameters from the collection of observationgnd/or pre-
and Riemannian distances: estimations gathered during the rst step. The most common
Geor o . _ 1=2 =2, estimators for patch-based denoising of SAR images are:
(®1:€2) = klog(®; €1, Ik (12) SME/WSME — NL-means and many of its successors
wherelog is the matrix logarithm and kg the Froebenius combine similar patches into a weighted average (weighted
norm. This similarity offers some interesting invariance programple mean estimator, WSME), where the weights are de-
erties. In the case of intensity images with pre-estimated réed from the similarities: see equation (8). By using weights,
diometryR, this criterion boils down t¢log(R,) log(R1))? the estimation relies more heavily on samples that are more
which is the square distance between observations after apnilar (thus, more reliable), which reduces bias. Compared to
plying a homomorphic transform on the pre-estimates. It has estimation based solely on a collection of patches detected
been shown in the framework of detection theory that criteras highly similar (i.e., by hard-assignment), the variance can
based on variance-stabilization (such as the log transformailso be reduced by considering a larger number of samples.
SAR) enjoy good properties [21]. It is interesting to see thdthe sample mean estimator corresponds to the conditional
such a criterion can be derived using different interpretatioegpectatiorE[vju]. This expectation may not directly be equal
(a geometric founding or a statistical reasoning). to the parameter of intereat, but require a debiasing step. A

again involving ratios, as customary in SAR imagery.
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notable example is the case of (weighted) averaging of lo§tep 3: Reprojection to image space -The second step

transformed SAR images. of nonlocal methods provides estimates either for a single
The estimation of covariance matrices from empirical ones caixel (pixel-wise estimation), for a single patch (patch-wise
be performed by WSME [12], [25], [20], [24], [14]: estimation), or for the whole stack of patches (stack-wise
. estimation). The rst option corresponds to basic NL means,
bWSME(X) = ’@W(X’X(?C(XO)' (13) already described above, so let us focus on the other two
<o W0 X9 strategies.
with w(x; x% the weight depending on the similaritfy x;x°) The difference in patch-wise ltering is that all pixels in the
between patches extracted at pixel locati@nand x°. patch, not just the central one, are estimated at once. Since

MLE/WMLE — The sample mean is nobg correct estimat@ach pixel is estimated several times, a suitable aggregation
of some parameters, e.g., the amplitudé. The sample phase is necessary to combine all such estimates. In particular,
mean should then be replaced by an estimator adjustedwi® need to de ne a reprojection functiogy( ), to get an

the maximum likelihood estimator. Similarly to the WSMEWhat is more important, these estimates refer to different
sample weights can be introduced in the estimation methqghtches, with different reliability levels, an information that
Maximum likelihood can be generalized into the weightedan be exploited to improve results. The reprojection can be
maximum likelihood estimator (WMLE) [9]: performed through a weighted average of Keestimators:

b"MLE (x) = arg max w(x;x9 log plv(x9jul: (14) X
v X0 b(x) = k By (X)) (16)

WMLE leads to (13) for Wishart-distributed covariance matri- k=1
ces, butimprovements are obtained for matrices with particufBie simplest form of aggregation is to consider uniform
structures as in interferometric SAR imaging [13]. weights , as done in the blockwise NL-means [8]. Another

MMSE - Kervrannet al. proposed a method called Bayesiastrategy is to set the weight associated with each estimate as
NL-means [27] that estimates the parameterss a linear inversely proportional to its variance [29].
combination of pre-estimated patcheswith weights de ned  To illustrate why patch-wise estimation improves perfor-
by the likelihood of each pre-estimated patch with respect tgance, let us consider the special case of a pixel near the
the observatiorv: boundary between two homogeneous regions. Since the patch
)ép[v(x)ja(xo)] e(x9 (15) centered on it is strongly heterogeneous, most other patches
{ o PV()je(xI] of the search area, coming from homogeneous regions on

Thi . be i q ... either side of the boundary, are markedly dissimilar from it,
Is esfimator can be interpreted as an approximation d contribute very little to the average. The estimate, thus,

the minimum mean square erro”r esgmgto(rj, "ﬁ" ':(he POStenAlolves only a small effective number of predictors, those
mean. P_re—es_umates are usualy o tained thanks t.o a,t\'&?dng the edge, which results in a high variance. As a result,
step or iterative pre- ltering [10]. Since the pre-estimation, \;sihie “halo” of residual noise is observed near edges, a
step provlldes only a coarse estimatignof the patchesl, ,\Phenomenon well-known in NL-means, also referred to as the
a smoothing parameter is introduced to reduce the selecti e patch effect. The target pixel, however, belongs to a large
of the likelihood function and thus avoid weighting too muc'ﬁumber of patches, not just the paizénteredon it, many of
patches that ar:e lyery CIO,S? to the observation [27]. ) them drawn from the homogeneous region the pixel belongs
A le:ﬁb— The megr.mgzgm mean sq;gre _(Ia_;]r.or estimatQf, | natch-wise re-projectioall these patches are included
as long been used in imaging [26]. This estlmatt%g the average reducing the estimate variance, especially if

bMMSE(X)

restricts the form of 'the solution o linear 'transforms %uitable weights are used to take into account the reliability
v, which is most ef cient when noise and signal are well¢ .- 1\ ~ontribution

separated. In SAR-BM3D [11], the LMMSE is computed after Let us now consider the third strategy, with stack-wise
an undecimated discrete wavelet transform (UDWT) is applielq fing. A rst difference w.r.t. patch-wise Ite,ring is that now
to the stack of similar patches. Expectation and variance éf at(;hes collected in t.hé.stack arellaboratively Itered
observations and parameters can be obtained from band—vgg

statistics and later re ned using pre- ltered patches aftera r
restoration has been performed.

ore reprojecting them to their original position. The major
Sﬂ’nprovement is that the stack is Itered in three dimensions,
that is, not only along the stack but also in the spatial domain.
The family of homomorphic approaches transform the muln BM3D [29] and, with necessary adjustments to the SAR
tiplicative noise into an additive one by taking the logarithm alomain, in SAR-BM3D [11], the whole stack, formed by
the observed intensity / amplitude. Several papers have deriygst a limited number of similar patches, is wavelet trans-
nonlocal estimators in this senseg, [28] where an “adjust formed, Wiener ltered, and back transformed. By so doing,
mean” step is used to deal correctly with the bias arising frostrong spatial structures are emphasized through Itering while
the Gaussian assumption (i.e., debiasing step described reordom noise is ef ciently suppressed. As a matter of fact,
SME). Note that estimators that process directly SAR datlaese techniques exhibit signi cant improvements especially
(i.e., without log-transforms) are often preferable since the highly structured areas (edges, point re ectors, textures).
debiasing step is then unnecessary. The ef ciency of collaborative Itering comes from the full
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Fig. 2. Single-look TerraSAR-X image of Barcelona (image courtedpnfoterra GmbH) and the radiometry estimated by the nonlocal method [11]. Images
are511 1043 pixels with a spatial resolution of 2.5 m.
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Fig. 3. On the left, two PoISAR images of the area of Kaufbeuren (Germany) sensed by F-SAR, single-look, X-band (top), S-band (bottom) (image courtesy
¢ DLR). On the center and right images, estimated polarimetric signatures using the nonlocal patch-based method [14]. IAR@es542 pixels with a

spatial resolution of 0.5 m.

exploitation of the redundancy of information in a stack odnd polarimetric or interferometric SAR images [14]. Be-
similar patches. yond speckle suppression, they improve parameter estimation,

The box titled “Overview of nonlocal estimation methodgdrastically enhancing radar measures. Therefore, they can be

in SAR imaging” gives a synthetic view of some of the mai§Xpected to have a strong impact, in the near future, on

methods developed for nonlocal estimation in SAR imaging!@ior applications of radar imaging, improving the biomass

Needless to say, performance depends on the setting of sevesmation with polarimetric - interferometric data; increasing

parameters, like patch size and search area size, which shd{ifg SPatial resolution in urban monitoring with radar tomog-
be related to image resolution, smoothing strength, and balafigBnY: enabling more reliable phase unwrapping methods for
between original and pre-estimated data. In most of tigerferometric SAR.
nonlocal approaches these parameters are set by hand. FefA# @ by-product of patch-based speckle reduction methods,
works have considered semi-supervised setting or automaigveral similarity criteria especially suited for SAR imaging
setting with spatial adaptation [14]. have been established. These criteria are central to many
Some sample experimental results that con rm the potenti@pplications: for classi cation and indexing using patch clus-
of nonlocal methods are presented in gure 2 for an amplitudgring; for change detection; for movement monitoring by
image with SAR-BM3D [11] and in gure 3 for a polari- Patch tracking.
metric data with NL-SAR [14]. Visual inspection shows the Patch-based methods are at their beginning and many open
performance of the approach in reducing strong uctuatiorigsues have yet to be solved. The speckle model consider so far
while preserving important features like targets and lines. Nofgimple complex Gaussian) is known to inaccurately describe
that no systematic artefacts should be observed with thegsy high resolution images or textured areas. Introduction
approaches unless the parameters are not set propgylyr(o 0f more accurate models (e.g., Weibull, Fisher or generalized
consideration of over-sampled data). A rigorous performanggmma distributions for amplitude, and corresponding matrix-
evaluation of nonlocal despeckling techniques is beyond tiariate polarimetric distributions) raises questions about the
scope of this paper. Some frameworks for SAR despecklifitgreased complexity of estimators and the possible loss of
evaluation and comparison are proposed in [30] and [1]. robustness with the increase of degrees of freedom. Another
limit is the geometric deformations appearing on SAR images
IV. OPEN ISSUES AND FUTURE TRENDS with elevated objects. Such deformations should be considered
Patch-based approaches provide the best performancetdoperform joint restoration of images taken from multiple
date for speckle reduction in SAR intensity images [30hcidence angles.
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OVERVIEW OF NONLOCAL ESTIMATION METHODS IN  SAR IMAGING
Nonlocal estimation methods perform the three steps depicted in the box 1) similar patches identi cation (choice of the similarity criterion);
“Nonlocal estimation in action”. A great variety of methods dedicated to  2) estimation of radar properties (choice of the estimator);
SAR images have been proposed over the last few years. These methods 3) reprojection of estimates onto the image space (choice of the dorpain).
follow different paths to implement each of the three steps: Below an overview of some of the main methods devoted to SAR imaging.
Method (oldest-rst)  Domain Estimator ~ SAR modality Self-similarity domain  Similarity criterion Scheme
PPB / NL-InSAR Pixel-wise WMLE SAR (any) / InSAR L =1) Patch-wise Detection + Information Iterative
[9], [13] Originality: iteratively re nes the weights by comparing patches of previous estimates and patches of the noisy image.
Pretest NLM Pixel-wise ~ WSME PoISAR L 3) Patch-wise Detection One step
[12] Originality: direct extension of [8] with a selection based on a GLR (referred to as pretest step).
Bayesian NLM Pixel-wise MMSE SAR (anly) Patch-wise Estimation One step
[10] Originality: prior patches are extracted in a multi-looked image. A sigma-range pre-selection is used and darker pixels are discarded.
SAR-BM3D Stack-wise LMMSE SAR (anyL) Patch-wise Detection + Information Two steps
[11] Originality: works on the UDWT of stacks: 1st step uses statistics of each subband; 2nd one uses statistics provided by the 1st iteration.
Bilateral NLM Pixel-wise WSME POISAR (ani) Pixel-wise Geometric Iterative
[25] Originality: images are multi-looked, then iteratively updated by nonlocal averaging based on geometrical comparison of pixel values (no patch).
Stochastic NLM Pixel-wise ~ WSME PoISAR (non-stationnary L) Stats-wise Information One step
[20] Originality: letsL vary in the image. Patch similarity is based on the divergence between MLE estimatesmd L within the patch.
Discriminative NLM Pixel-wise WSME PoISAR Patch-wise Detection Iterative
[24] Originality: iteratively re nes weights based on the ratio of diagonal elements of empirical covariance matrices and the span of the previous iterate.
NL-SAR Pixel-wise ~ WMLE (Pol)(In)SAR (anyL) Patch-wise Detection Adaptive
[14] Originality: fully automatic: patch sizes, search windows and pre- Itering strenghts are spatially tuned to provide improved results.
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