Free-electron properties of metals under ultrafast laser-induced electron-phonon nonequilibrium: A first-principles study

Abstract : The electronic behavior of various solid metals (Al, Ni, Cu, Au, Ti, and W) under ultrashort laser irradiation is investigated by means of density functional theory. Successive stages of extreme nonequilibrium on picosecond time scale impact the excited material properties in terms of optical coupling and transport characteristics. As these are generally modelled based on the free-electron classical theory, the free-electron number is a key parameter. However, this parameter remains unclearly defined and dependencies on the electronic temperature are not considered. Here, from first-principles calculations, density of states are obtained with respect to electronic temperatures varying from 10^-2 to 10^5 K within a cold lattice. Based on the concept of localized or delocalized electronic states, temperature dependent free-electron numbers are evaluated for a series of metals covering a large range of electronic configurations. With the increase of the electronic temperature we observe strong adjustments of the electronic structures of transition metals. These are related to variations of electronic occupation in localized d bands, via change in electronic screening and electron-ion effective potential. The electronic temperature dependence of nonequilibrium density of states has consequences on electronic chemical potentials, free-electron numbers, electronic heat capacities, and electronic pressures. Thus electronic thermodynamic properties are computed and discussed, serving as a base to derive energetic and transport properties allowing the description of excitation and relaxation phenomena caused by rapid laser action.
Complete list of metadatas

Cited literature [37 references]  Display  Hide  Download
Contributor : Jean-Philippe Colombier <>
Submitted on : Thursday, April 3, 2014 - 6:10:01 PM
Last modification on : Monday, October 15, 2018 - 4:10:04 PM
Long-term archiving on : Thursday, July 3, 2014 - 6:41:17 PM


Files produced by the author(s)




Emile Bévillon, Jean-Philippe Colombier, Vanina Recoules, Razvan Stoian. Free-electron properties of metals under ultrafast laser-induced electron-phonon nonequilibrium: A first-principles study. Physical Review B : Condensed matter and materials physics, American Physical Society, 2014, 89, pp.115117. ⟨10.1103/PhysRevB.89.115117⟩. ⟨ujm-00961655v2⟩



Record views


Files downloads