Exact discrete minimization for TV+L0 image decomposition models

Abstract : Penalized maximum likelihood denoising approaches seek a solution that fulfills a compromise between data fidelity and agreement with a prior model. Penalization terms are generally chosen to enforce smoothness of the solution and to reject noise. The design of a proper penalization term is a difficult task as it has to capture image variability. Image decomposition into two components of different nature, each given a different penalty, is a way to enrich the modeling. We consider the decomposition of an image into a component with bounded variations and a sparse component. The corresponding penalization is the sum of the total variation of the first component and the L0 pseudo-norm of the second component. The minimization problem is highly non-convex, but can still be globally minimized by a minimum s-t-cut computation on a graph. The decomposition model is applied to synthetic aperture radar image denoising.
Type de document :
Communication dans un congrès
Image Processing (ICIP), 2010 17th IEEE International Conference on, Sep 2010, Hong Kong SAR China. pp.2525 - 2528, 2010, 〈10.1109/ICIP.2010.5649204〉
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger

https://hal-ujm.archives-ouvertes.fr/ujm-00985427
Contributeur : Loïc Denis <>
Soumis le : mardi 29 avril 2014 - 16:25:30
Dernière modification le : mercredi 25 juillet 2018 - 14:05:31
Document(s) archivé(s) le : mardi 29 juillet 2014 - 13:20:57

Fichier

graphcuts_image_decomposition_...
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Loïc Denis, Florence Tupin, X. Rondeau. Exact discrete minimization for TV+L0 image decomposition models. Image Processing (ICIP), 2010 17th IEEE International Conference on, Sep 2010, Hong Kong SAR China. pp.2525 - 2528, 2010, 〈10.1109/ICIP.2010.5649204〉. 〈ujm-00985427〉

Partager

Métriques

Consultations de la notice

398

Téléchargements de fichiers

108