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{hong.thinh.nguyen, cecile.barat, ducottet }@univ-st-etienne.fr

Keywords: Edit distance, string of histograms, bag-of-visual words, image classification

Abstract: The Spatial Pyramid Matching approach has become very popular to model images as sets of local bag-of-

words. The image comparison is then done region-by-region with an intersection kernel. Despite its success,

this model presents some limitations: the grid partitioning is predefined and identical for all images and the

matching is sensitive to intra- and inter-class variations. In this paper, we propose a novel approach based on

approximate string matching to overcome these limitations and improve the results. First, we introduce a new

image representation as strings of ordered bag-of-words. Second, we present a new edit distance specifically

adapted to strings of histograms in the context of image comparison. This distance identifies local alignments

between subregions and allows to remove sequences of similar subregions to better match two images. Ex-

periments on 15 Scenes and Caltech 101 show that the proposed approach outperforms the classical spatial

pyramid representation and most existing concurrent methods for classification presented in recent years.

1 INTRODUCTION

Local feature histograms are widely employed to rep-

resent visual contents in various areas of computer vi-

sion. In particular, histograms of visual words based

on SIFT features, in the well-known bag-of-words

model, have proven to be very powerful for image

classification or retrieval tasks (Sivic and Zisserman,

2003). However, such histograms only use a global

information and discard spatial distribution of fea-

tures. The trend in recent years is towards the use

of a set of local histograms rather than only one to en-

code spatial information and provide richer represen-

tations. An image is partitioned into regions, using

either a segmentation algorithm (Chen et al., 2009) or

a division according to a grid pattern (Lazebnik et al.,

2006; Battiato et al., 2009; Cao et al., 2010). Each re-

gion is then described with a local feature histogram.

In this context, the most significant work is

certainly the ”Spatial Pyramid Matching” approach

(SPM), which gave excellent classification results on

different image collections, as 15 Scenes and Caltech

101 (Lazebnik et al., 2006). SPM consists in divid-

ing an image into predefined regular grids of differ-

ent scales (1×1,2×2,4×4,..) and computing a bag-

of words histogram in each cell. The different his-

tograms are then ordered and combined with appro-

priate weights into a unique vector to form the final

image representation. Two images are then compared

using an intersection kernel. Since this approach was

very efficient, it has received great research attention.

The different aspects of the model have been investi-

gated for the purpose of improving performance lead-

ing to systems that reach state-of-the-art results in the

domain. For instance, some authors focus their atten-

tion on the coding of local visual features to improve

the local bag-of-words representation (Yang et al.,

2009a; de Avila et al., 2013). Sparse coding asso-

ciated with max pooling have shown good results in

(Yang et al., 2009a). Other works focus on optimiz-

ing the partitioning of images. In (Sharma and Jurie,

2011), Sharma et al. propose to learn the best discrim-

inative grid splitting optimizing a given classification

task. In (Viitaniemi and Laaksonen, 2009), Viitaniemi

et al. compare techniques of soft tiling and hard tiling.

Furthermore, some works propose to learn or adapt

weights rather than using fixed ones, as in (Harada

et al., 2011). All these kinds of approaches often as-

sociate the definition of new kernels for image com-

parison (He et al., 2008; Viitaniemi and Laaksonen,

2009; Harada et al., 2011).

Most of these SPM-based methods perform well



though they use rigid matching between correspond-

ing regions limiting their invariance to geometric

transformations. Indeed they assume that similar

parts of a scene or an object generally lay in simi-

lar regions of the space. In the case of two images

whose visual elements are located at different posi-

tions or have different extensions as on Figure 1, the

matching fails while the visual content is quite sim-

ilar. These methods actually compute an approxi-

mate global matching of the visual words among im-

ages. Our intuition is that computing an approximate

matching of the histograms would make the method

more robust.

One popular category of methods for approximate

matching uses the edit distance. The standard edit

distance is a string metric for measuring the differ-

ence between two sequences. It is defined as the min-

imum number of edit operations, i.e. insertion, dele-

tion, substitution, which are required to transform one

string to the other (Wagner and Fischer, 1974). It has

the advantage of providing the matching of symbols

located at different positions in the string taking into

account the order of these symbols and some costs af-

fected to each edit operation. Moreover, there exists

an efficient calculation algorithm based on dynamic

programming. In the image domain, this distance has

been successfully used for text recognition applica-

tions (Seni et al., 1996; Christodoulakis and Brey,

2009; Khurshid et al., 2009) or shape matching (Klein

et al., 2001). A key question is the representation of

the visual content as strings.

In this paper, we propose a new method to rep-

resent images as strings of histograms and, to com-

pare such representations, we introduce a string ker-

nel that uses an extended edit distance tailored to the

context of local histograms comparison. The his-

tograms can correspond to local SIFT bag-of-words

computed with recent developments as sparse cod-

ing. For each given pair of images, our distance not

only takes into account the similarity between pair-

wise regions (with the substitution cost) as in the

standard SPM model, but also integrates information

about similarity between neighbouring regions (with

the insertion/deletion cost). It allows to identify local

alignments between subregions or groups of similar

subregions in images. With the proposed approach,

the number of subregions for different images may

vary and is considered according to the visual con-

tent, which brings flexibility to the matching process

in comparison with previous mentioned methods. We

validate our approach on two well-known datasets: 15

Scenes and Caltech 101.

There has been some related work in the literature

aiming to take into account topological relationships

√

x x

x

√ √ √

√√√√

√

√

√

√

√ x

x

x

x

x

√

√√

√

√

xx

x √

√

√√

√x

x

√

√

√

√

√√

√

√√

√

√

x x

√

x x

a)

c)

b)

Figure 1: Examples of intra-class pairwise mismatches due
to changes in viewpoint and moves of a scene component:
(a) horizontal translation leading to additional sea regions
and removal of land regions (b) move of bird’s head lead-
ing to vertical displacement of similar regions on the left of
the image (c) scale variation leading to additional sky re-
gions replacing top chimney ones. Images are taken from
15 Scenes and Caltech 101 datasets.

between regions (Iovan et al., 2012; Sharma and Ju-

rie, 2011) or using an edit distance between strings

of bag-of-words (Ballan et al., 2010). The work of

(Yeh and Cheng, 2011) is the most similar to our ap-

proach. However, their representation is questionable.

They build strings from the 16 histograms of the sec-

ond level of a spatial pyramid, following a raster scan.

Thus, consecutive histograms in the strings may have

no spatial relationships. Moreover, they use fixed

costs for insertion/ deletion operations which does not

allow to adapt the image partitioning as we propose.

Also, they use a single level of the pyramid while we

combine different ones.

The remainder of this paper is organized as fol-

lows. In section 2, we discuss the limits of the SPM

model and present our model of images as strings of

histograms. In section 3, we develop the edit distance

adapted to strings of histograms and derive an edit

kernel. Section 4 describes experiments and results

of our edit distance on image classification tasks. We

conclude in Section 5.

2 IMAGE REPRESENTATION

In this section, we discuss the limitations of pairwise

matching using spatial pyramid scheme, then we in-

troduce our image representation model.

2.1 Pairwise matching limitations

In SPM-based methods, a similar grid partitioning

scheme is applied to all images. This approach is



not optimal to represent the image layout in two re-

spects. First, using a predefined partitioning pattern,

independently from the content, is sensitive to intra-

class variations. Figure 1 illustrates changes in view-

point, scale and a displacement of part of an image

with level 2 of the spatial pyramid. These changes

cause mismatches between pairwise regions due to

local misalignments between images, while contents

are quite similar. Note that such changes can often be

seen as adding (or removing) regions similar to their

neighbourood. For instance, in the case of Figure 1(a)

and Figure 1(c), sea regions replace coast regions and

sky regions replace the top of the nuclear chimney due

to landscape continuity.

Second, partitioning images similarly along both

directions may not always be the best strategy to de-

scribe the visual content. Indeed, in images, there ex-

ists a natural sequencing of objects or entities within

objects. It is possible to find a principal direction

along which the projection of local features may con-

vey information about the image context or capture

the essence of the form of an object. Intuitively, as

suggested in (Cao et al., 2010), in natural scenes, ver-

tical or horizontal directions can plausibly describe

relationships among local features. For instance, the

sky is above trees, and trees are above grass. For ur-

ban scenes, in (Iovan et al., 2012), the authors propose

similarly to replace the SPM grid division with divi-

sions along the vertical axis to better take into account

the composition of this kind of images. For object im-

ages, as proposed in (Tirilly et al., 2008), the major

axis of an object can be obtained from the first prin-

cipal component in a principal component analysis.

Distribution of local features along this major axis is

similar whatever the orientation or scale the object is.

The graphs of Figure 2 highlight the two men-

tioned limitations of SPM on the 15 Scenes dataset.

The classification accuracy is plotted with respect to

the number of local regions, using either a grid par-

titioning or divisions along one axis, vertical or hor-

izontal. Each region is described with a SIFT bag-

of-words obtained following the protocol of (Lazeb-

nik et al., 2006) and a vocabulary of 100 words. The

classification accuracy was computed with intersec-

tion kernel SVM and 10-fold cross-validation. We

observe that increasing the number of regions first im-

proves the classification accuracy, but when the num-

ber of regions is too high, the accuracy decreases.

It is explained by the fact that the number of mis-

matches is all the greater that the number of regions

increases. Moreover, using a vertical directional par-

titioning gives higher results than a grid partitioning

for this dataset composed mainly of natural scenes.
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Figure 2: Classification accuracy versus number of local
regions for the 15 Scenes dataset using pairwise matching
and different partitioning schemes: grid, vertical divisions
or horizontal ones.
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Figure 3: Example of an image representation as two strings
of histograms.

2.2 Defining strings of histograms

We propose a representation of images based on

strings of bag-of-words to better describe the intrin-

sic order of regions in a given direction. First, we

choose an orthogonal basis v1,v2 that may best rep-

resent the image content. We divide an image into B

bands of same width along direction v2. Then, each

band is subdivided into N subregions of same size,

along direction v1. For each band, traveling along v1

provides an ordered string of subregions. Figure 3 il-

lustrates the construction of the strings associated to a

two band case.

In this paper, we only consider the case of vertical

and horizontal axes. The vertical direction being re-

tained as the principal direction v1. Indeed, as shown

after several evaluations over different datatsets, we

found that the vertical direction always provides the

best results (see Section 4). However, the method can

be generalized to any other basis.



2.3 Pyramidal strategy

In practice, the number of bands B and the number of

regions per band N is fixed for all images and deter-

mined according to the dataset used. Note that these

parameters do not play the same role. Parameter B

defines the main image partitioning and plays a simi-

lar role as the division parameters used in (Lazebnik

et al., 2006). Thus, we can choose either to fix its

value to a power of 2 (e.g. B = 1,2 or 4) or to use a

pyramidal strategy considering all the strings obtained

for several splittings obtained with B = 20, . . . ,2L−1

where L is the number of pyramid levels. Parameter

N defines the size of the strings. In our edit distance-

based approach, this parameter is not too sensitive if

it is large enough, as shown in Section 4.

3 AN EDIT DISTANCE FOR

STRINGS OF HISTOGRAMS

In this section, we present an extended edit distance

tailored to compensate for mismatches limiting per-

formances of rigid matching approaches, as explained

previously. We first recall the standard edit distance.

3.1 The standard edit distance

The standard edit distance allows to compute the op-

timal alignment of two strings. In its simple form, the

edit distance between two strings X = x1x2 . . .xN and

Y = y1y2 . . .yM is defined as the minimum cost of all

sequences of edit operations which transform X into

Y . The permitted edit operations with their associated

cost functions are as follows:

• insertion of a symbol y j into X with cost cins(y j)

• deletion of a symbol xi into X with cost cdel(xi)

• substitution of a symbol xi with the symbol y j

with cost csub(xi,y j)

Computing this distance can be formulated as an

optimization problem and can be carried out with

a dynamic programming algorithm. The algorithm

consists in computing a D(N,M) matrix, where

D(i, j) represents the minimum cost of transforming

X = x1x2 . . .xi into Y = y1y2 . . .y j, with allowable

edit operations mentioned above. The computational

complexity is proportional to the product of the length

of the two strings, i.e. in O(N×M). The computation

is carried out using the following recurrence relation:



































D0,0 = 0

D0, j = D0, j−1 + cins(y j), j = 1 . . .N

Di,0 = Di−1,0 + cdel(xi), i = 1 . . .M

Di, j = min
(

Di−1, j + cdel(xi),
Di, j−1 + cins(y j),
Di−1, j−1 + csub(xi,y j)

)

,

i = 1 . . .M, j = 1 . . .M
(1)

3.2 A new string matching distance

In our approach, symbols are histograms of visual

words. Let us recall that our aim is to compute an

approximate matching between strings of histograms

in order to correct mismatches due to fixed grid parti-

tioning seen in Section 2.1. By definition, the edit dis-

tance aims to find the optimal alignment between two

strings, and thus allows naturally to correct local or

global misalignment due to translation of viewpoint

modifications between two images. An immediate

strategy is to use fixed costs for insertion and deletion

and a ground distance between histograms for substi-

tution. To go further, we propose to adapt insertion

and deletion costs to the local context. The goal is

to virtually adjust the grid partitioning during the im-

age comparison and compensate for mismatches that

occur with homogeneous parts of a scene or object

splitted in different regions. Our approach is to use

deletions and insertions to get rid of repetitions of

similar symbols respectively in the input string (dele-

tion) or in the output string (insertion), relatively to

the other string. More precisely, during the alignment

of the two strings, if one symbol is more similar to its

following than to the corresponding one in the other

string, it will be removed. Formally, this rule comes

to define costs functions as:

csub(xi,y j) = d(xi,y j) (2)

cdel(xi) = d(xi,xi+1) (3)

cins(y j) = d(y j,y j+1) (4)

where d is any histogram distance. We use ℓ1 distance

in the following.

The new edit distance is then computed by trans-

fering these specific cost functions into the original

dynamic programming algorithm.

3.3 Examples

We first illustrate our string matching distance with

a toy example (Figure 4). This example simulates
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Repetitions of symbols are removed to match the strings

Figure 4: A toy example to illustrate the matching using
SMD for the single band case.

a viewpoint change similar to the real case of Fig-

ure 1(c). The distance matrix gives minimum dis-

tances Di, j and arrows show the sequence with min-

imum cost, detailed on the right. To well under-

stand the values, we detail calculations of three cells.

First, the cell D0,1 equal to 2 gives the insertion

cost of symbol 7|3|0, i.e. d(7|3|0,6|3|1), while the

cell D1,0 is the deletion cost of symbol 4|6|0, i.e.

d(4|6|0,8|0|2). The value of D1,1 is the minimum

of D0,1 + d(4|6|0,8|0|2), D1,0 + d(7|3|0,6|3|1) and

D0,0 + d(4|6|0,7|3|0), i.e. min{14,14,6} = 6. As

for the computation of D1,1, each minimum distance

takes into account similarity between neighbouring

regions and direct pairwise similarity between corre-

sponding regions, allowing to remove repetitions of

symbols when necessary to adapt to the other string.

In our toy example, the resulting edit sequence comes

to consider the two similar regions 8|0|2 as a unique

one that matches the similar one in the second image.

We now give a real-case example seen in Figure 1(b).

As shown on Figure 5, two bands of four regions are

used. The string matching sequence obtained for the

first band is given showing a better alignment than

with direct pairwise matching. Here, insertions and

deletions enable to deal with a change of position of

the head of the bird. In each case, region matchings

that we have drawn correspond to the real computed

edit scripts. These examples confirm the interest of

our approach to better deal with possible changes in

object size, position or shape in the direction of the

string.

First band Second band First band Second band
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Figure 5: Real example of SMD matching for a two-band
case.

3.4 Image comparison kernel

To be able to use a standard Support Vector Machine

(SVM) algorithm for image classification, we define

two kernels for measuring the similarity of two im-

ages with our edit distance: one for the single level

image representation and one for the pyramidal one.

When considering one level of a pyramid with B

bands of N symbols, the comparison of two images

amounts to compute the distance between every 2-by-

2 corresponding strings and sum the B distance re-

sults. This distance is denoted dB
SMD. In the pyramidal

case, several levels of splitting are combined using a

weighted sum of dB
SMD distances leading to the L lev-

els pyramidal SMD distance d
P(L)
SMD. Formally, these

distances between two images I and J are given by:

dB
SMD(I ,J ) =

1

BN

B

∑
b=1

dSMD(x
B
b (N),yB

b (N)) (5)

d
P(L)
SMD(I ,J ) = ∑

B∈{20,...,2L−1}

αB dB
SMD(I ,J ) (6)

where xB
b (N) (resp. yB

b (N)) represents the bth string

of the B bands splitting of image I (resp. image J )

and αB are the weighting coefficients, chosen to be

here those proposed by (Lazebnik et al., 2006).

Applying these two distances in the classical

string edit kernel (Li and Jiang, 2005) leads to the fol-

lowing kernels:

KB
SMD(I ,J ) = e−γdB

SMD(I ,J ) (7)

K
P(L)
SMD(I ,J ) = e−γd

P(L)
SMD(I ,J ) (8)

where γ is a scaling coefficient chosen to ensure the

admissibility of the kernel for a given dataset.

4 RESULTS

In this section, we report experimental results on

two popular datasets: 15 Scenes and Caltech 101.
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Figure 6: Classification performances for 15 Scenes and
Caltech 101 datasets with SMD under different number of
regions, number of bands and scanning directions.

The motivation of these experiments is twofold: first

we study the influence of the parameters of our im-

age representation model on the classification accu-

racy. Second, we evaluate our edit matching method

against the pairwise matching approach, spatial pyra-

mid matching and other concurrent methods.

As mentioned previously, in experiments, the local

bag-of-words are computed as in (Lazebnik et al.,

2006). For classification, we apply a SVM classifier

using libSVM in a one-vs-all setting. Kernel matrices

are computed either with our edit kernels presented in

Section 3.4 or the histogram intersection kernel for

comparison purpose. With Caltech 101, we chose

randomly 30 images per class for training and up to 50

images per class for testing. With 15 Scenes, we train

on 100 random images per class and test on remain-

ing ones. Each experiment was repeated 10 times

with randomly selected training and testing sets. The

performance of all experiments are evaluated by the

mean accuracy over the 10 runs.

4.1 Influence of string parameters

In our string based representation model, several pa-

rameters have to be set to compute classification re-

sults: the number of bands and the scanning direction,

the number of regions and the size of the vocabulary.

In this section, we study the influence of these param-

eters.

The classification accuracy is first computed with re-

spect to the number of regions per band from 1 to

16, varying the number of bands (B = 1, B = 2 and

B = 4) and the scanning direction (vertical or hori-

zontal). The vocabulary is then fixed to 100 words.

Results are presented on Figure 6.

Scanning direction. The results for the two data sets

are different. For 15 Scenes dataset, all vertical case

graphs are above horizontal case ones. These results

confirm the intuition that the vertical direction in nat-

ural scenes provides a better characterization of the

image structure than the horizontal one, as discussed

in Section 2.2. For Caltech 101 dataset, differences

between the horizontal and vertical case graphs are

not that significant. It can be explained by the speci-

ficity of this collection where the objects of interest

take up most of the image and are approximately cen-

tered. Comparing objects along one or the other di-

rection does not really matter. Since on the overall

the vertical direction performs better, we keep this di-

rection in all subsequent experiments.

Number of bands. Again, the results depend on the

collection. Indeed, considering the 1, 2 and 4 bands

cases, the results behave inversely. For 15 Scenes, re-

sults decrease as the number of bands increase, i.e.

one band is enough to get the best results while for

Caltech 101, it is preferable to use four bands. As pre-

viously, it is inherent to the type of images. Observing

a natural scene from top to bottom allows to identify

the content. Using two parallel vertical bands does

not convey much information. It even introduces con-

fusion because of redundancy between bands, leading

to worst results. For objects, a finer look at the differ-

ent parts is necessary to identify them correctly.

It is worth noticing that for both datasets, a 2-level

pyramid approach clearly outperforms single level

splitting cases. This strategy is suitable to get the best

results at the cost of a higher dimension representa-

tion.

Number of regions. Considering the influence of the

number of regions, the global evolution of all curves

is similar: the accuracy is almost monotonically in-

creasing with a stabilization for N = 8 for Caltech 101

and N = 10 for 15 Scenes. From this value, the re-

sults remain roughly constant or slightly better. The

highest accuracy is 66.53 % achieved with N = 13 for
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Figure 7: Influence of the vocabulary size

Caltech 101, and 83.16 % with N = 16 for 15 Scenes.

But since performances were quite similar with lower

number of regions, it is preferable to use N = 8 or

N = 10 to reduce the computation time.

Vocabulary size. To investigate the effect of the vo-

cabulary size, we fix the number of bands to the opti-

mal values obtained previously, i.e. B = 4 for Caltech

101 and B = 1 for 15 Scenes. Figure 7 shows the

classification results for three vocabulary sizes 100,

200 and 400 as a function of N. For Caltech 101, the

best results are obtained with the smallest vocabulary

(k = 100) and we note that the accuracy is decreasing

over N for k = 200 or k = 400. For 15 Scenes, the

influence of the vocabulary size is low and the results

are slightly better for k = 200, but they are very close

to k = 100 for a large N. Obtaining the best results

for small vocabularies is unusual in the BoVW con-

text. This very interesting behavior is due to the prop-

erties of the edit distance: to benefit from insertions

and deletions, we must have enough similar symbols

and thus no too large histograms. Thus, a clear advan-

tage of our string based approach is to provide a more

compact representation capable to exploit the spatial

distribution of the visual information. In the follow-

ing experiments, we will keep a vocabulary of 100

visual words.
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Figure 8: Performance of SMD vs PMD

4.2 Spatial vs pairwise matching

Here, experiments are to verify the performance im-

provement by our string matching approach (SMD)

over a classic pairwise matching approach (PMD)

when using a same partitioning. Figure 8 presents the

results, still keeping the optimal number of bands for

each dataset.

First, it is obvious that for both datasets, SMD is

always above PMD for N > 5 and any given split-

ting. As seen in Section 2.1, the greater the number of

regions, the greater the number of local mismatches,

leading to a decrease of performances of a pairwise

matching approach. With SMD, for large N, the accu-

racy stabilizes (Caltech 101) or slightly increases (15

Scenes). It proves that SMD naturally compensates

the local mismatches.

Note that our method SMD achieves better results

than those reported by Lazebnik et al (Lazebnik et al.,

2006) for the same datasets. Indeed, for a 200 vocabu-

lary size, we get 65.1 vs 64.6 for Caltech 101 and 82.0

vs 81.1 for 15 Scenes. These results are obtained re-

spectively for N = 7 and N = 14 with only 100 visual



Table 1: Comparison of our approach over concurrent meth-
ods based on SIFT and k-means. The size of the codebook
is given in brackets. We report the highest values obtained
in pyramidal case only. − means there is no result available.

Method Caltech 101 15 Scenes

SPM (pyr., K=100) 63.2 [100] 80.1 [100]

SPM (best pyr. result) 64.6 [200] 81.4 [400]

SPM+co-occurrence - 82.51 [200]

Sequence matching - 80.9 [200]

SPM+ spatial - 80.1 [1000]

partition learning

SMD 66.5 [100] 83.2 [100]

words which gives a much more compact representa-

tion. Again, the matching is improved thanks to the

proposed insertion and deletion operations used in our

string edit distance.

4.3 Comparison with existing methods

In Table 1, the proposed method is first compared with

the concurrent techniques that use a single SIFT de-

scriptor and the original BoVW coding, i.e. BoVW

histogram (sum pooling) with a hard assignment for

visual words for fair comparison. These methods

are the original SPM method, SPM + co-occurrence

(combination of SPM and the spatial relationship in-

formation between visual words inside each image

(Yang and Newsam, 2011), sequence matching (Yang

et al., 2009b) and optimal spatial partitioning (Sharma

and Jurie, 2011). The table shows that for both

datasets, our approach clearly outperforms all other

methods. It is important to note that the best result is

obtained with the smallest vocabulary of 100 words.

Also, to compare SMD with recent works based

on sparse coding to create the vocabulary, we have in-

tegrated sparse coding in our method. For this, we use

the Matlab code ScSPM from authors of (Yang et al.,

2009b) , and following (Boureau et al., 2010), we use

the max pooling to compute local BoVW due to it bet-

ter performance than average pooling. We compare

to methods Sc-SPM (Yang et al., 2009b) and Kernel

Sparse Representation (KSR-SPM) (Gao et al., 2010).

The Sc-SPM approach can be treated as spatial pyra-

mid matching method using sparse coding. The KSR-

SPM approach is the combination of SPM with a ker-

nel sparse representation technique. Our method def-

initely outperforms both of them.

Table 2: Comparison with sparse coding based methods. −
means there is no result available.

Method Caltech 101 15 Scenes

ScSPM [1024] 73.2 ± 0.5 80.28 ± 0.9

KSR-SPM [1024] - 83.68 ± 0.61

SMD [100] 73.44 ± 1.1 84.59 ± 0.7

5 CONCLUSION

In this paper, our contribution is twofold. First, we

describe a novel image representation as strings of

histograms which encodes spatial information, each

histogram being a BoVW model of a subregion. Sec-

ond, we introduce a new edit distance able to automat-

ically identify local alignments between subregions

and the removal of sequences of similar subregions.

This characteristic makes our method more robust to

translation or scale variations of objects in images

than SPM-based approaches that compare rigidly cor-

responding parts of images.

The experiments confirm that our model is able to

take into account spatial relationships between local

BoVW and leads to a clear improvement of perfor-

mance in the context of scene and image classifica-

tion compared to the classical spatial pyramid repre-

sentation. It is worth noticing that to the best of our

knowledge, it is the first time that results better than

SPR are reported with the standard BoVW coding and

a lower dimension for the representation. Moreover,

the proposed approach obtain similar or better accura-

cies than other recent methods trying to infuse spatial

relationships into the original BoVW model with the

great advantage of using a small codebook and a com-

pact representation. In the future, we are interested

in extending our edit distance to other data structures

such as trees. Trees are indeed often used to represent

image content, and some edit distances already exist.
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