Unsupervised clustering of depth images using Watson mixture model

Abstract : In this paper, we propose an unsupervised clustering method for axially symmetric directional unit vectors. Our method exploits the Watson distribution and Bregman Divergence within a Model Based Clustering framework. The main objectives of our method are: (a) provide efficient solution to estimate the parameters of a Watson Mixture Model (WMM); (b) generate a set of WMMs and (b) select the optimal model. To this aim, we develop: (a) an efficient soft clustering method; (b) a hierarchical clustering approach in parameter space and (c) a model selection strategy by exploiting information criteria and an evaluation graph. We empirically validate the proposed method using synthetic data. Next, we apply the method for clustering image normals and demonstrate that the proposed method is a potential tool for analyzing the depth image.
Type de document :
Communication dans un congrès
International Conference on Pattern Recognition (ICPR), Aug 2014, Stockholm, Sweden. pp.1-6, 2014
Liste complète des métadonnées

https://hal-ujm.archives-ouvertes.fr/ujm-01005179
Contributeur : Olivier Alata <>
Soumis le : jeudi 12 juin 2014 - 10:30:56
Dernière modification le : jeudi 11 janvier 2018 - 06:20:35

Identifiants

  • HAL Id : ujm-01005179, version 1

Collections

Citation

Abul Hasnat, Olivier Alata, A. Trémeau. Unsupervised clustering of depth images using Watson mixture model. International Conference on Pattern Recognition (ICPR), Aug 2014, Stockholm, Sweden. pp.1-6, 2014. 〈ujm-01005179〉

Partager

Métriques

Consultations de la notice

135