Unsupervised RGB-D image segmentation using joint clustering and region merging

Abstract : Recent advances in imaging sensors, such as Kinect, provide access to the synchronized depth with color, called RGB-D image. In this paper, we propose an unsupervised method for indoor RGB-D image segmentation and analysis. We consider a statistical image generation model based on the color and geometry of the scene. Our method consists of a joint color-spatial-axial clustering method followed by a statistical planar region merging method. We evaluate our method on the NYU depth database V2 (NYUD2) and compare with existing unsupervised RGB-D segmentation methods. Results show that our method is comparable with the state of the art methods. Moreover, it opens interesting perspectives for fusing color and geometry in an unsupervised manner.
Type de document :
Communication dans un congrès
British Machine Vision Conference (BMVC), 2014, Sep 2014, United Kingdom. pp.1-12, 2014
Liste complète des métadonnées

https://hal-ujm.archives-ouvertes.fr/ujm-01020565
Contributeur : Olivier Alata <>
Soumis le : mardi 8 juillet 2014 - 11:38:23
Dernière modification le : mercredi 25 juillet 2018 - 14:05:31

Identifiants

  • HAL Id : ujm-01020565, version 1

Collections

Citation

Abul Hasnat, Olivier Alata, Alain Trémeau. Unsupervised RGB-D image segmentation using joint clustering and region merging. British Machine Vision Conference (BMVC), 2014, Sep 2014, United Kingdom. pp.1-12, 2014. 〈ujm-01020565〉

Partager

Métriques

Consultations de la notice

345