C. Zhu, R. Byrd, J. Nocedal, and J. L. Morales, A Limited Memory Algorithm for Bound Constrained Optimization Optimization issues in blind deconvolution algorithms, Proc. SPIE 4847, Astronomical Data Analysis II, pp.1190-1208, 1995.

J. Steven, J. J. Benson, and . Moré, A Limited Memory Variable Metric Method in Subspaces and Bound Constrained Optimization Problems, 2001.

W. William, H. Hager, and . Zhang, A New Active Set Algorithm for Box Constrained Optimization, SIAM Journal on Optimization, vol.17, issue.2, pp.526-557, 2006.

W. Mark, E. Schmidt, M. P. Van-den-berg, K. Friedlander, and . Murphy, Optimizing costly functions with simple constraints: A limited-memory projected quasi-newton algorithm, International Conference on Artificial Intelligence and Statistics, 2009.

C. Dong, J. Liu, and . Nocedal, On the limited memory BFGS method for large scale optimization, Mathematical Programming, pp.503-528, 1989.

C. Lemaréchal, Numerical Experiments in Nonsmooth Optimization, IIASA Workshop on Progress in Nondifferentiable Optimization, pp.61-84, 1982.

L. Luksan and J. Vlcek, Globally Convergent Variable Metric Method for Convex Nonsmooth Unconstrained Minimization1, Journal of Optimization Theory and Applications, vol.20, issue.3, pp.593-613, 1999.
DOI : 10.1023/A:1022650107080

M. Haarala, K. Miettinen, and M. M. Mäkelä, New limited memory bundle method for large-scale nonsmooth optimization, Optimization Methods and Software, vol.83, issue.6, pp.673-692, 2004.
DOI : 10.1007/s101070100263

A. S. Lewis and M. L. Overton, Nonsmooth optimization via quasi-Newton methods, Mathematical Programming, pp.135-163, 2012.
DOI : 10.1007/s10107-012-0514-2

A. Nedic, P. Dimitri, and . Bertsekas, Convergence Rate of Incremental Subgradient Algorithms, Stochastic Optimization: Algorithms and Applications, pp.223-264, 2001.

J. Yu, S. Vishwanathan, N. Nicol, and . Schraudolph, A Quasi-Newton Approach to Nonsmooth Convex Optimization Problems in Machine Learning, Journal of Machine Learning Research, vol.11, pp.1145-1200, 2010.

C. Hui-teo, S. Vishwanathan, A. Smola, V. Quoc, and . Le, Bundle Methods for Regularized Risk Minimization, Journal of Machine Learning Research, vol.11, pp.311-365, 2010.

J. V. Burke, A. S. Lewis, and M. L. Overton, A Robust Gradient Sampling Algorithm for Nonsmooth, Nonconvex Optimization, SIAM Journal on Optimization, vol.15, issue.3, pp.751-779, 2005.
DOI : 10.1137/030601296

C. Krzysztof and . Kiwiel, Convergence of the Gradient Sampling Algorithm for Nonsmooth Nonconvex Optimization, SIAM Journal on Optimization, vol.18, issue.2, pp.379-388, 2007.

G. B. Passty, Ergodic convergence to a zero of the sum of monotone operators in Hilbert space, Journal of Mathematical Analysis and Applications, vol.72, issue.2, pp.383-390, 1979.
DOI : 10.1016/0022-247X(79)90234-8

R. E. Bruck, On the weak convergence of an ergodic iteration for the solution of variational inequalities for monotone operators in Hilbert space, Journal of Mathematical Analysis and Applications, vol.61, issue.1, pp.159-164, 1977.
DOI : 10.1016/0022-247X(77)90152-4

L. Patrick, V. R. Combettes, and . Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Modeling & Simulation, vol.4, issue.4, pp.1168-1200, 2005.

M. José, M. A. Bioucas-dias, and . Figueiredo, A New TwIST: Two-Step Iterative Shrinkage/Thresholding Algorithms for Image Restoration, IEEE Transaction on Image Processing, vol.16, issue.12, pp.2992-3004, 2007.

A. Beck and M. Teboulle, A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems, SIAM Journal on Imaging Sciences, vol.2, issue.1, pp.183-202, 2009.
DOI : 10.1137/080716542

Y. Nesterov, A method for unconstrained convex minimization problem with the rate of convergence O (1/k2), Doklady Akademii Nauk SSSR, vol.269, issue.3, pp.543-547, 1983.

P. Tseng, Applications of a Splitting Algorithm to Decomposition in Convex Programming and Variational Inequalities, SIAM Journal on Control and Optimization, vol.29, issue.1, pp.119-138, 1991.
DOI : 10.1137/0329006

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers, Machine Learning, pp.1-122, 2011.
DOI : 10.1561/2200000016

J. Eckstein, P. Dimitri, and . Bertsekas, On the Douglas???Rachford splitting method and the proximal point algorithm for maximal monotone operators, Mathematical Programming, pp.293-318, 1992.
DOI : 10.1007/BF01581204

M. V. Afonos, M. José, M. A. Bioucas-dias, and . Figueiredo, Fast Image Recovery Using Variable Splitting and Constrained Optimization, IEEE Transactions on Image Processing, vol.19, issue.9, pp.1-11, 2009.
DOI : 10.1109/TIP.2010.2047910

V. Manya, . Afonso, M. José, . Bioucas-dias, A. Mário et al., An Augmented Lagrangian Approach to the Constrained Optimization Formulation of Imaging Inverse Problems, IEEE Transactions on Image Processing, vol.20, issue.3, pp.681-695, 2011.

A. Matakos, S. Ramani, and J. A. Fessler, Accelerated Edge-Preserving Image Restoration Without Boundary Artifacts, IEEE Transactions on Image Processing, vol.22, issue.5, pp.2019-2029, 2013.
DOI : 10.1109/TIP.2013.2244218

S. J. Wright, R. D. Nowak, and M. A. Figueiredo, Sparse Reconstruction by Separable Approximation, IEEE Transactions on Signal Processing, vol.57, issue.7, pp.2479-2493, 2009.
DOI : 10.1109/TSP.2009.2016892

N. Parikh and S. Boyd, Proximal Algorithms, Foundations and Trends?? in Optimization, vol.1, issue.3, pp.123-231, 2013.
DOI : 10.1561/2400000003

Y. Wang, J. Yang, W. Yin, and Y. Zhang, A New Alternating Minimization Algorithm for Total Variation Image Reconstruction, SIAM Journal on Imaging Sciences, vol.1, issue.3, pp.248-272, 2008.
DOI : 10.1137/080724265