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Abstract—SAR images have distinctive characteristics com-
pared to optical images: speckle phenomenon produces strong
uctuations, and strong scatterers have radar signatures several
orders of magnitude larger than others. We propose to use an
image decomposition approach to account for these peculiarities.

Several methods have been proposed in the eld of image
processing to decompose an image into components of different
nature, such as a geometrical part and a textural part. They
are generally stated as an energy minimization problem where
speci ¢ penalty terms are applied to each component of the sought
decomposition.

We decompose temporal series of SAR images into three
components: speckle, strong scatterers and background. Our de-
composition method is based on a discrete optimization technique
by graph-cut. We apply it to change detection tasks.

. INTRODUCTION

Denoising and restoration is one of the oldest challenge

of image processing. Like other coherent imaging technique

To cope with these problems related to the speci ¢ nature
of the SAR images, we propose to model separately these
two contributions (background and bright scatterers) and to
jointly estimate them. This paper extends the idea of SAR
image decomposition introduced in [3] and in [4] to temporal
series and applies it to change detection.

This decomposition is then applied to detect changes
between SAR images taken at different times. Detecting and
analyzing changes is one of the primary application for SAR
data, mainly thanks to the reliability of acquisition regarding
the weather. The problem has rst been tackled by [5] using
a difference operator. State-of-the art methods now use likeli-
hood ratio test such as in [6] and in [7].

In section I, we describe a model to detect strong scatterers
and perform change detection. This model is stated as a
minimization problem. In section Ill, we provide a way of
obtaining the exact solution for this problem. Finally, we
describe and evaluate our models in an application of change

Sdetection in section IV.

SAR imagery suffers from strong uctuations due to speckle
phenomenon. Speckle can be described as a multiplicative
noise, while most algorithms developed in the eld of image
processing are designed to deal with an additive noise. This
calls for an adaptation of algorithms developed for optical
images or the development of new techniques.

II. MULTI-TEMPORAL SPARSE+ SMOOTH

DECOMPOSITION MODEL

Total variation (TV) minimization [8] is a method widely
used for noise reduction. It strongly penalizes signal uctua-

The simplest way to reduce the noise is multi-lookingtions while preserving edges by minimizing the total variation
which amounts to averaging pixel values within a smallof the signal (i.e., the sum of the spatial gradient magnitude).
window. With a window big enough, noise can be strongly

reduced, at the cost of a resolution loss. This kind of method i Although this method has been applied by several authors

Bradiometric value several orders of magnitude higher than the

buildings. Local averaging methods need to deal with thesg, . nding background. Using total variation regularization
points separately in order to prevent from spreadllng the or such signals has the effect of removing the point-like
out on the whole window. Strong scatterers can be identi eds4terers and of biasing the estimation of the neighboring
using for instance a likelihood ratio test as in [1] and [2]. Th_earea (spreading effect). On the other hand, these points are
corresponding detector compares the radiometry of the point arsely distributed in the image and are thus present in a
r]Fﬁﬂted number. In this section, we propose a decomposition

under test to the average value computed over a surroundi
window (e.g., cross-shaped). While being simple, this test failg,qqe| combining regularity of the background and sparsity of
the bright scatterers in multi-temporal series.

when other scatterers are present in the window.

This work has been funded by the CNES and the “Future et Ruptures”
program.

We consider a temporal series of observed images



sceneu, at thet-th date is modeled as a sum of 2 componentswith:
ugy ; (component with bounded variations, representing the

background) andus; (sparse component representing the |og(p(VjU))= log "y 2V2t(_')exp Vztz_(')
bright scatterers). The observed imagge is related to the o1 i UE() ug(i)
underlying scenel; by: XX
= log(2v¢(i))
Vi =(Ugv ¢ + Ust) N (1) t=1 i2
. : o _ +2log(usy +(i) + us(i))

wheren; is a speckle noise realization corresponding to a SAR v2(i)
acquisition system with multiplicative noise model. In the case + t i
of SAR images, noise follows a Rayleigh distribution (when (Usv ¢ + Us)?(i)
considering amplitude images) and is weakly correlated (if = DT(vt; Uy ¢;Usy); (6)

images are not over-sampled) so that the likelihood distribution

can be considered separable: with the rst term ( Iog(2vt(|))) independent olJ, which

will thus be discarded in the following. In summary, the energy

is given by:
p(Viju) = p(ve(i)jue(i)) X
t=1i2 E(U) = sLO(us¢) + v TVap(Usy )
YO 2v(i) va(i) t=1
= . uzt(i) exp utzt(i) , () + DT(Vi;Upy (;Usy): (7

. . . . . IIl. EXACT DISCRETE OPTIMIZATION BY GRAPHCUTS
where is the set of the pixels in an image ang(i) is the

value at pixeli in imaget. The cost function introduced in equation 7 is highly non-
convex. In this section, we show how to nd the global

We de ne next the prior (J) in order to enforce the optimum of the optimization problem (up to a given precision
decomposition of the radar scene into its two independendie ned by the quantization step size) without resorting to an

componentdJgy andUs: approximation by L1 relaxation of the LO-norm, as typically
done when solving such optimization problem.
logp(U) = gv logp(Ugy ) slogp(Us); (3)  First, we consider the sub-problem of solviagy rEnin E(U)
S

for a xed Upy :
where the distributions(y gy ) and U s) model each com- BY

ponent. The background is consider to be formed by homo=" ] ]

geneous regions with sharp boundaries (piece wise constais(Uev ) =argmin — (DT(vi;usy ¢;Use) +  sLO(Us))
model), with possibly some abrupt changes between two dates. t=1 _

Images following such models have a low 3D total variation, + v TVap(Usy ):

we therefore choose to de ne: Since all terms are separable, we can solve the minimization
independently for each pixel:

logp(Usy ) TV3B(U BV )

w o x 1 usi(i)? if DT(Vt(i();U(BS/t(i);U(S;(i))?)
. . . us¢(i)(u i) = + 5 < DT(v¢(i);u i);0
= @ jugy (i) usv((j)iA st (Uev (1) 0 othzrwise t o
t=1  ij 2C
X1 X ! With us;(i)” = arg min DT(ve(i);usv «(i); us:(i)).-
+ Vs () Uy 1 () -
=1 iz JUBv 1 BV t+1 ' We can now rewrite the minimization problem under a

form involving only U gy :

whereC is the set of all cliques in depending of the chosen X V
neighborhood. The choice of an anisotropic version of total argmin E(U) = arg m|n DT(v¢; Uy ¢; Ust(Ugy t))

variation (the gradient magmtude is de ned in the L1 norm Usv t=1

sense) will nd its justi cation in the numerical optimization + SkUS(UBV YKo

method described in the next section. The component contain- + TVan(U 8

ing strong scatterers is sparse, which is classically enforced by sv TVap(Usy ) (8)

an energy that increases with the number of hon-zero elements, ) )

such as the LO pseudo-norm: The rst two terms of equation 8 are separ_able (|:e.,

they correspond to a sum of terms involving a single pixel

logp(Us) = kUsko @) at a time) and the last one is convex and involves only

pairwise terms (i.e., pairs of pixel values). This minimization

roblem can thus be exactly minimized by graph-cuts using the
Up to a constant term, the (opposite) log posterior distributio
corresponds to the following energy: r][7)1ethod described in [14]. This optimization method consists

if seen as a discrete optimization problem, i.e., for a given gquantization of

E(U)=log(p(Vju)) log(p(U)); (5)  the componentigy
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Fig. 1. Decomposition of an image of Saint-Gervais acquired by TerraSAR-X. Thanks to the German Aerospace Agency (DLR)
for the images (project MTH0232 and LAN1746).

in searching the min-cut in a graph where every possible
value for each pixel is represented by a node. Neighboring
nodes (spatially or in time) are interconnected by vertices with
weights corresponding togy . Nodes representing the same
pixel i at two consecutive possible valuesand + 1 are

= GLRT [Lombardo and Oliver, 2001]
—— Wilcoxon Test [Krylov et al., 2012]

60

(Qrue Positive %

interconnected by vertices with weightévp(i)j ). We show soff R et 200 o coecton]
an example of a decomposition obtained with our model using « , ‘ . i
this optimization technique in gure 1. %0 .

Note that the graph construction used here presents a high |
memory usage: it require¢ = n j j j Aj vertices and S w w w —w w7 w W w
E=7nj jj Ajedges whera is the number of images in
the seriesj | is the number of pixels in each image aj&j  Fig. 2: False positive alarm versus true positive curves of
the number of possible values for the background image. In thearious change detection algorithms
implementation of the min-cut algorithm introduced in [15], a
vertex takes 48 bytes and an edge takes 32 bytes. Therefore,
the graph construction requiré2 n | | j Ej bytes, . ) bin .
limiting the size of the images that can be processed. On Hat we name in the followind us;"™ g. We describe the
larger image, we could use algorithms such as those describ@§ocedure for change detection between two imagesnd
in [10] or in [16] that sub-sample the set of amplitudes toY2 taken in these series.

lower the memory occupation of the optimization technique  The main dif culty to overcome when performing change
and obtain an approximate solution to the problem. detection based on point-like scatterers is that these points are

Regarding computational cost, it has a worst-case compleﬁ?t necessarily stable. To handle thIS' situation, wellook for
ity of O(EV ?jCj) wherejCj is the minimum cut and is also pixels that are dete_cted as scatterers in an |mage_W|thout any
the complexity of our method. On a computer with an Inte| Scatterer detepted in a neighborhood in the other image. This
Xeon(R) CPU E5-1620 with 16Gb of RAM, the algorithm ¢an be formalized by:
takes 52,04s to compute on 2 images300 400 pixels with X X
50 levels of quanti cation. Note that we do not fully bene t T@) = ushn i+ ) usbn(i+ ) (9)
from the power of the processor as the implementation of the
algorithm is single-core.

whereT is a temporary image, and(i) represents the chances
of having a change at positidn is used to iterate over the

IV." SCATTERERS CHANGE DETECTION neighborhood of the pixdl This image is then thresholded to
A. Method nd the changes between the two images.

For a series of observed imageés, the model de-
scribed in section Il provides a serie of decompositions ’
f(ugv 1;Us1);:::;(UBy niUsn)g. A rst change detection We ran this algorithm on a time serie of SAR images
approach consists of exploiting the scatterer detection to ndf Saint-Gervais (France). We compare the results of this
changes between them. This is not a straightforward task sinadgorithm with other change detection methods in gure 2
the value and the exact position of the detected scattereend we show an example of results in image 3. While the
can greatly vary when a small change happens in the scenesults are not as good as dedicated state-of-the-art change
Therefore, we start by binarizing the scatterers imdgesg  detection algorithms such as the ones presented in [17] our

Results



(3]

(4]

(3]

(b) Input image 26. [6]

(a) Input image 1.

(7]

(8]

(0]

(c) Changes on image 1. (d) Changes on image 26.

[10]
Fig. 3: Change detection results using the proposed method
on images of Saint-Gervais series. Regions with changes that
have been detected are indicated in red. [11]

[12]
method performs better than the ones presented in [18] and in
[19].

[13]

V. CONCLUSION

This paper introduces a decomposition model suitable to
multi-temporal series of SAR images. The proposed modeHM]
combines a TV regularization with an LO pseudo-norm to
achieve a good estimation of the radiometry of the scene
even when point-like bright scatterers are present. It providegs
a decomposition between the background of the scene and
the scatterers. We proposed a simple application of this de-
composition framework to change detection using the images
of scatterers computed by the algorithm on a SAR seried1€l
The method vyields results close to that of state-of—the—ar[t17
algorithms. ]

Further work includes more complex change detection
approaches using all components (background and tardets). 18]
contrario framework could be used to detect changes as irg
[20] from the scatterers images. Furthermore, strategies should
be investigated to tackle the practical problem caused by the
heavy consumption of memory of our optimization method. [19]
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