Evariste III: A new multi-FPGA system for fair benchmarking of hardware dependent cryptographic primitives

Nathalie Bochard, Cédric Marchand, Oto Peťura, Lilian Bossuet, Viktor Fischer

To cite this version:

HAL Id: ujm-01219840

https://hal-ujm.archives-ouvertes.fr/ujm-01219840

Submitted on 26 Oct 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Evariste III: A new multi-FPGA system for fair benchmarking of hardware dependent cryptographic primitives

Nathalie Bochar, Cédric Marchand, Oto Petura, Lilian Bossuet, Viktor Fischer
Laboratoire Hubert Curien, UMR 5516 CNRS - Université Jean Monnet, Saint-Etienne, France

What’s new?
- 3 new FPGA modules, one with an embedded ARM processor
- Motherboard with ZIF (zero insertion force) connectors
- Serial connection of up to 6 modules via JTAG
- Box with 6 motherboards interconnected and chained
- 30 modules of each new FPGA family for PUF evaluation available
- SMA connectors in all modules for side channel analysis added

Inherited from Evariste II
- Both scripting and fast acquisition data programs
- Open source system
- Remotely available via Internet
- Fast USB interface

TRNGs
System dedicated to True Random Number Generators

PUFs
System dedicated to Physical Unclonable Functions

SCAs
System dedicated to Side Channel Analyses

Sources of funding:
European Union’s Horizon 2020 research and innovation program: HECTOR - Hardware Enabled Crypto and Randomness - grant agreement No 644052.
ANR 2013 call: SAWARE - Salutary hardware design to fight against integrated circuit counterfeiting and theft - ANR-13-IS03-0003.
NATO SPP (Science for Peace) 2013: SFPP984520 "Secure implementation of post-quantum cryptography".
