A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep convolutional neural networks, Advances in Neural Information Processing Systems, pp.1097-1105

M. D. Zeiler and R. Fergus, Visualizing and Understanding Convolutional Networks, Computer Vision?ECCV 2014, pp.818-833, 2014.
DOI : 10.1007/978-3-319-10590-1_53

URL : http://arxiv.org/abs/1311.2901

K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman, Return of the devil in the details: Delving deep into convolutional nets, arXiv preprint arXiv:1405, p.3531, 2014.

M. Cimpoi, S. Maji, and A. Vedaldi, Deep convolutional filter banks for texture recognition and segmentation , arXiv preprint arXiv:1411, p.6836, 2014.

Y. Gong, L. Wang, R. Guo, and S. Lazebnik, Multi-scale orderless pooling of deep convolutional activation features, arXiv preprint arXiv:1403, p.1840, 2014.

K. He, X. Zhang, S. Ren, and J. Sun, Spatial pyramid pooling in deep convolutional networks for visual recognition, Computer Vision?ECCV 2014, pp.346-361, 2014.

Z. Jie and S. Yan, Robust scene classification with crosslevel LLC coding on CNN features, Asian Conference on Computer Vision (ACCV), 2014.

M. Koskela and J. Laaksonen, Convolutional Network Features for Scene Recognition, Proceedings of the ACM International Conference on Multimedia, MM '14, pp.1169-1172
DOI : 10.1145/2647868.2655024

G. Seni, V. Kripasundar, and R. K. Srihari, Generalizing edit distance to incorporate domain information: Handwritten text recognition as a case study, Pattern Recognition, vol.29, issue.3, pp.405-414, 1996.
DOI : 10.1016/0031-3203(95)00102-6

M. Christodoulakis and G. Brey, EDIT DISTANCE WITH COMBINATIONS AND SPLITS AND ITS APPLICATIONS IN OCR NAME MATCHING, International Journal of Foundations of Computer Science, vol.20, issue.06, pp.1047-1068, 2009.
DOI : 10.1142/S0129054109007030

K. Khurshid, C. Faure, and N. Vincent, A Novel Approach for Word Spotting Using Merge-Split Edit Distance, 13th International Conference on Computer Analysis of Images and Patterns, pp.213-220, 2009.
DOI : 10.1007/978-3-642-03767-2_26

P. N. Klein, T. B. Sebastian, and B. B. Kimia, Shape matching using edit-distance: an implementation, Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms, pp.781-790

A. Muzameel, M. Rashmi, N. Shravya, S. Sindhu, and . Supritha, Shape classification using shape context and dynamic programming, International Journal of Scientific & Engineering Research, vol.4, 2013.

J. Ros, C. Laurent, J. Jolion, and I. Simand, Comparing String Representations and Distances in a Natural Images Classification Task, GbR'05, 5th IAPR-TC-15 Workshop on Graph-Based Representations, pp.72-81
DOI : 10.1007/978-3-540-31988-7_8

C. Barat, C. Ducottet, E. Fromont, A. Legrand, and M. Sebban, Weighted Symbols-Based Edit Distance for String-Structured Image Classification, Machine Learning and Knowledge Discovery in Databases, pp.72-86, 2010.
DOI : 10.1007/978-3-642-15880-3_11

URL : https://hal.archives-ouvertes.fr/hal-00499468

M. Yeh and K. Cheng, Fast visual retrieval using accelerated sequence matching, Multimedia, IEEE Transactions on, vol.13, pp.320-329, 2011.
DOI : 10.1109/tmm.2010.2094999

H. Nguyen, C. Barat, and C. Ducottet, Approximate image matching using strings of bag-of-visual words representation, International Conference on Computer Vision Theory and Applications, pp.345-353, 2014.
URL : https://hal.archives-ouvertes.fr/ujm-01004415

K. Chatfield, V. Lempitsky, A. Vedaldi, and A. Zisserman, The devil is in the details: an evaluation of recent feature encoding methods, Procedings of the British Machine Vision Conference 2011, pp.76-77
DOI : 10.5244/C.25.76

C. Iovan, D. Picard, N. Thome, and M. Cord, Classification of Urban Scenes from Geo-referenced Images in Urban Street-View Context, 2012 11th International Conference on Machine Learning and Applications, pp.339-344
DOI : 10.1109/ICMLA.2012.171

URL : https://hal.archives-ouvertes.fr/hal-00794980

H. E. Tasli, R. Sicre, and T. Gevers, Geometry-constrained spatial pyramid adaptation for image classification, 2014 IEEE International Conference on Image Processing (ICIP), pp.1051-1055
DOI : 10.1109/ICIP.2014.7025209

G. Sharma and F. Jurie, Learning discriminative spatial representation for image classification, Procedings of the British Machine Vision Conference 2011, pp.1-11, 2011.
DOI : 10.5244/C.25.6

URL : https://hal.archives-ouvertes.fr/hal-00722820

X. Li, Y. Song, Y. Lu, and Q. Tian, Spatial pooling for transformation invariant image representation, Proceedings of the 19th ACM international conference on Multimedia, MM '11, pp.1509-1512, 2011.
DOI : 10.1145/2072298.2072052

Y. Cao, C. Wang, Z. Li, L. Zhang, and L. Zhang, Spatial-bag-of-features, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.2010-3352
DOI : 10.1109/CVPR.2010.5540021

Y. Jiang, J. Yuan, and G. Yu, Randomized Spatial Partition for Scene Recognition, Computer Vision?ECCV 2012, pp.730-743
DOI : 10.1007/978-3-642-33709-3_52

P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus et al., Overfeat: Integrated recognition , localization and detection using convolutional networks, arXiv preprint arXiv:1312, p.6229, 2013.

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long et al., Caffe, Proceedings of the ACM International Conference on Multimedia, MM '14, pp.1408-5093, 2014.
DOI : 10.1145/2647868.2654889

M. Christodoulakis and G. Brey, Edit distance with single-symbol combinations and splits, Proceedings of the Prague Stringology Conference, pp.208-217, 2008.

H. Li and T. Jiang, A Class of Edit Kernels for SVMs to Predict Translation Initiation Sites in Eukaryotic mRNAs, Journal of Computational Biology, vol.12, issue.6, pp.702-718, 2005.
DOI : 10.1089/cmb.2005.12.702

S. Lazebnik, C. Schmid, and J. Ponce, Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Volume 2 (CVPR'06), pp.2169-2178, 2006.
DOI : 10.1109/CVPR.2006.68

URL : https://hal.archives-ouvertes.fr/inria-00548585

A. Quattoni and A. Torralba, Recognizing indoor scenes, 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp.413-420, 2009.
DOI : 10.1109/CVPR.2009.5206537

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

L. Fei-fei, R. Fergus, and P. Perona, Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories, IEEE CVPR Workshop of Generative Model Based Vision (WGMBV)
DOI : 10.1016/j.cviu.2005.09.012

A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, CNN features off-the-shelf: an astounding baseline for recognition, arXiv preprint arXiv:1403, p.6382, 2014.