Toward Word Embedding for Personalized Information Retrieval

Abstract : This paper presents preliminary works on using Word Embedding (word2vec) for query expansion in the context of Personalized Information Retrieval. Traditionally, word em-beddings are learned on a general corpus, like Wikipedia. In this work we try to personalize the word embeddings learning , by achieving the learning on the user's profile. The word embeddings are then in the same context than the user interests. Our proposal is evaluated on the CLEF Social Book Search 2016 collection. The results obtained show that some efforts should be made in the way to apply Word Embedding in the context of Personalized Information Retrieval.
Type de document :
Communication dans un congrès
Neu-IR: The SIGIR 2016 Workshop on Neural Information Retrieval, Jul 2016, Pisa, Italy. Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval, abs/1606.06991, 2016
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger

https://hal-ujm.archives-ouvertes.fr/ujm-01377080
Contributeur : Mathias Géry <>
Soumis le : jeudi 6 octobre 2016 - 12:10:01
Dernière modification le : jeudi 11 janvier 2018 - 06:21:05
Document(s) archivé(s) le : samedi 7 janvier 2017 - 12:56:35

Fichier

version_finale_personalization...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : ujm-01377080, version 1

Collections

Citation

Nawal Ould Amer, Philippe Mulhem, Mathias Géry. Toward Word Embedding for Personalized Information Retrieval. Neu-IR: The SIGIR 2016 Workshop on Neural Information Retrieval, Jul 2016, Pisa, Italy. Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval, abs/1606.06991, 2016. 〈ujm-01377080〉

Partager

Métriques

Consultations de la notice

315

Téléchargements de fichiers

383