J. W. Kim, Fabrication of inverse micro/nano pyramid structures using soft UV-NIL and wet chemical methods for residual layer removal and Si-etching, Microelectronic Engineering, vol.110, pp.403-407, 2013.
DOI : 10.1016/j.mee.2013.02.098

J. M. Harper, Ion Beam Etching, pp.391-423, 1989.
DOI : 10.1016/B978-0-08-092446-5.50011-1

J. W. Coburn, H. F. Winters, and T. J. Chuang, Surface processes in plasma-assisted etching environments, J. Vac. Sci. Technol. B, vol.1, p.496, 1983.

I. Gereige, Dimensional characterization of biperiodic imprinted structures using optical scatterometry, Microelectronic Engineering, vol.112, pp.27-30, 2013.
DOI : 10.1016/j.mee.2013.05.022

URL : https://hal.archives-ouvertes.fr/hal-00941606

C. J. Raymond, Multiparameter grating metrology using optical scatterometry, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.15, issue.2, p.361, 1997.
DOI : 10.1116/1.589320

M. Kodadi, Resist trimming etch process control using dynamic scatterometry, Microelectronic Engineering, vol.86, issue.4-6, pp.1040-1042, 2009.
DOI : 10.1016/j.mee.2008.12.036

URL : https://hal.archives-ouvertes.fr/hal-00374855

S. Soulan, In-line etching process control using dynamic scatterometry, Modeling Aspects in Optical Metrology, p.661713, 2007.
DOI : 10.1117/12.726197

URL : https://hal.archives-ouvertes.fr/hal-00168934

C. J. Raymond, Comparison of solutions to the scatterometry inverse problem, Metrology, Inspection, and Process Control for Microlithography XVIII, pp.564-575, 2004.
DOI : 10.1117/12.538662

G. Cormier and R. Boudreau, Genetic algorithm for ellipsometric data inversion of absorbing layers, Journal of the Optical Society of America A, vol.17, issue.1, pp.129-134, 2000.
DOI : 10.1364/JOSAA.17.000129

X. Chena, Improved measurement accuracy in optical scatterometry using fitting error interpolation based library search, Measurement, vol.46, issue.8, pp.2638-2646, 2013.
DOI : 10.1016/j.measurement.2013.04.080

I. J. Kallioniemi and J. Saarinen, Optical scatterometry with neural network model for nondestructive measurement of submicron features, Proc. SPIE, pp.33-40, 1999.

S. Robert, A. Mure-ravaud, and D. Lacour, Characterization of optical diffraction gratings by use of a neural method, Journal of the Optical Society of America A, vol.19, issue.1, pp.24-32, 2002.
DOI : 10.1364/JOSAA.19.000024

I. Gereige, Rapid Control of submicrometer periodic structures by a neural inversion from ellipsometric measurement, Optics Communications, vol.278, issue.2, pp.270-273, 2007.
DOI : 10.1016/j.optcom.2007.06.008

URL : https://hal.archives-ouvertes.fr/ujm-00291969

S. Robert and A. Mure-ravaud, Control of the homogeneity of an optical grating by a neural characterization, Opt. Eng, vol.44, issue.3, p.33601, 2005.
URL : https://hal.archives-ouvertes.fr/ujm-01390636

I. Gereige, S. Robert, and J. Eid, Automatic detection of photoresist residual layer in lithography using a neural classification approach, Microelectronic Engineering, vol.97, pp.29-32, 2012.
DOI : 10.1016/j.mee.2012.02.032

URL : https://hal.archives-ouvertes.fr/ujm-01390616

J. Zhu, Identification and reconstruction of diffraction structures in optical scatterometry using support vector machine method, Journal of Micro/Nanolithography, MEMS, and MOEMS, vol.12, issue.1, p.13004, 2013.
DOI : 10.1117/1.JMM.12.1.013004

J. Ren, ANN vs. SVM: Which one performs better in classification of MCCs in mammogram imaging, Knowledge-Based Systems, vol.26, pp.144-153, 2012.
DOI : 10.1016/j.knosys.2011.07.016

T. Kohonen, The self organising map, Neurocomputing, vol.2113, pp.1-6, 1998.

A. Mekler and D. Schwarz, Quality assessment of data discrimination using self-organizing maps, Journal of Biomedical Informatics, vol.51, pp.210-218, 2014.
DOI : 10.1016/j.jbi.2014.06.001

F. Coleca, Self-organizing maps for hand and full body tracking, Neurocomputing, vol.147, pp.174-184, 2015.
DOI : 10.1016/j.neucom.2013.10.041

A. Majumder, L. Behera, and V. K. Subramanian, Emotion recognition from geometric facial features using self-organizing map, Pattern Recognition, vol.47, issue.3, pp.1282-1293, 2014.
DOI : 10.1016/j.patcog.2013.10.010

M. S. Prieto and A. R. Allen, Using self-organising maps in the detection and recognition of road signs, Image and Vision Computing, vol.27, issue.6, pp.673-683, 2009.
DOI : 10.1016/j.imavis.2008.07.006

E. Alhoniemi, Process monitoring and modeling using the self organising map, Integr. Comput. Aided Eng, vol.6, issue.1, pp.3-14, 1999.

R. Anderwartha, G. H. Derrick, and R. C. Mcphedran, A General Modal Theory for Reflection Gratings, Optica Acta: International Journal of Optics, vol.14, issue.11, pp.1501-1516, 1981.
DOI : 10.1080/713820488

P. Schiavone, G. Granet, and J. Y. Robic, Rigorous electromagnetic simulation of EUV masks: influence of the absorber properties, Microelectronic Engineering, vol.57, issue.58, pp.57-58, 2001.
DOI : 10.1016/S0167-9317(01)00472-5

URL : https://hal.archives-ouvertes.fr/hal-00490483

L. Li, New formulation of the Fourier modal method for crossed surface-relief gratings, Journal of the Optical Society of America A, vol.14, issue.10, pp.2758-2767, 1997.
DOI : 10.1364/JOSAA.14.002758

T. Kohonen, The self-organizing map, Proceedings of the IEEE, vol.78, issue.9, pp.1464-1480, 1990.
DOI : 10.1109/5.58325

I. T. Jollife, Principal Component Analysis, 1986.
DOI : 10.1007/978-1-4757-1904-8