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ABSTRACT
Multi-object tracking is a difficult problem underlying man
computer vision applications. In this work, we focus on sedi g
ment transport experiments in a flow were sediments are reg
resented by spherical calibrated beads. The aim is to tihck
beads over long time sequences to obtain sediment vebciti
and concentration. Classical algorithms used in fluid mecha
ics fail to track the beads over long sequences with a high preé
cision because they incorrectly handle both miss-detestio _ )
and detector imprecision. Our contribution is to propose & 19- 1. Example of trajectories for two tracked beads (cropped
particle filter-based algorithm including an adapted rpisti images). Green color is for a coarse black bead and red is for
motion model. Additionally, this algorithm integrates sest @ Smaller transparent bead.
improvements to account for the lack of precision of the de-
tector. The evaluation was made using a test sequence with
a dedicated ground-truth. The results show that the metho&lc
outperforms state-of-the-art concurrent algorithms.

In recent years, particle filter-based approaches have been
cessfully used in many applications [8, 9, 10]. The main
benefit of these methods is to enable the estimation of the
distribution of the target's system state incorporatingoa n
linear motion model. In this context, Breitensteinal. [11]
proposed a very efficient online multi-target tracking ap-
proach accounting for the detector confidence to handle-miss
detections. However, this method is not directly adapted to
Visual target tracking is a recurrent problem in computer vi our problem mainly because it uses a single motion model

Index Terms— Particle filtering, multi-model tracking,
multi-object tracking, detector confidence, bedload tpainis

1. INTRODUCTION

sion, it has been used in many applicatiang, video surveil-
lance, sports analysis, or traffic safety. In particulajeob
tracking is used in fluid mechanics to track particles withte

unable to describe all occurring object interactions.
In this paper, using the same framework, we propose to
introduce a multiple motion model dedicated to our simula-

niques as PIV [1] and PTV [2]. We focus here on bedload sedtion of bedload transport. Each motion model corresponds
iment transport experiments. The aim is to track all splaéric to a specific state of motion of our objects: resting, rolling
beads (see Fig. 1) over a long time to obtain particle ve@sit or bouncing. We also introduce improvements to correctly
and concentrations [3], for studying bedload granular Fheo handle the lack of precision of the detector providing tiagk
ogy [4], size segregation [5] and associated morphology [6] over long sequences with a high precision for objects mositi

In this context, most of the proposed algorithms are deter- The paper is structured as follows. After discussing the
ministic and rely on a standard two step approach: (1) objedelated work in next section, Sec. 3 describes our algorithm
detection, (2) object tracking by solving a data assoaiatio and design choices. Sec. 4 presents the evaluation re$ults o
problem [7]. However, these are not robust enough to trackacking performances and a comparison with concurrent al-
objects over very long sequences with a good precision fogorithms. Finally, Sec. 5 concludes the paper.
object positions. This is mainly because they incorrecély-h
dle miss-detections and do not take into account the lack of
precision of the detector.

2. RELATED WORK

Various visual tracking approaches have been reviewed [12,
13] and they can be separated in two categories: detection-
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based methods and Bayesian filtering ones. In fluid mechan- To handle missing detections on transparent beads, we use
ics, researchers usually employ the first one, taking the the detector confidence as a graded observation model [11].
object detector output as a straight truth and then soltieg t Based on the raw output of the detector, the detector confi-
association problem on pairwise frames [7, 14]. This deterdence must give an estimation of the likelihood of a detec-
ministic approach lacks precision since it strongly rebes tion at each candidate pixel. In our case, for a given detec-
detectors that can be unreliable and imprecise. tion d € D, we propose to define the confidence value as
Sequential monte carlo methods or particle filters werex decreasing function of the distance to the detection posi-
introduced to provide better estimations and predictidfis [ tion x4 with a maximum equal to the cross-correlation out-
16, 17]. Basically, they consist of a dynamic model for pre-putxcorr(d) of the detectori.e. the correlation value before
diction and an observation model to evaluate the likelihoodhresholding. Formally, for each positianof the image, the
of a predicted state. The main steps are: random generatiatetector confidence density(x) is defined as:
of a sample of potential states called particles, propagati 1
of these particles through the motion model and resampling d.(z) = —
of the distribution according to the observation model. To kp
handle difficult tracking situations in a multi-object cenrt,
Breitensteiret al. [11] proposed an online and automatic par-
ticle filter-based algorithm that exploits the intermediaut-
put of the object detector as a graded observation model. As
most particle filter-based algorithms, it relies on a sirgle  3.2. Data association

tion model which can be problematic in an environment With_l_ . i ¢ detection to at " track dat
complex dynamics. 0 assign at most one detection to at most one tracker, a data

association process is needed. Due to the high number of

To face this limitation, multiple dynamics models such as } ; . )
detections and the long time series, a greedy algorithm was

switching dynamical model approaches [18], have been ref d1to b froct uti Gi th tchi :
cently developed under particle filters for robotics andinav ound to be an efiective solution. “iven theé matching cos
c(tr,d) between all tracker-detection pairs, the greedy algo-

gation [19] or video surveillance [20]. These methods use th". / . :
fact that object motions can be classified in different motio rithm iteratively selects the best candidate and removes th
orresponding concurrent associations. To limit the numbe

states according to the situation. Each motion state ig deal

with specific state evolution model for prediction. However ?f possible _tr?cgtir-det_ectloP pall(lrs,_thl_e S.tet do': pt(;]ss:jb;fcdﬁ
it requires to know all motion states beforehand with a mathe lons associated 1o a given tracker IS imited to the delast
located inside a circular region centered at the predictsé p

matical description for each. In contrast, our method &iplo i iven by this tracker. Thi dicted ition i q
the mechanistic knowledge we have in our application. 0N 7, given by This fracker. This predicted position s made
assuming a constant velocity model.

Given a tracketr and a detectiod, the matching cost is:

ZdeD xcorr(d) exp(—A|lx —x4]|) (1)

where\ denotes the exponential decay constant (see Sec. 3.4),
andkp is the normalization coefficient.

3. MULTI-OBJECT TRACKING ALGORITHM

[z — 25| |val

. _— . . c(tr,d) = « + 2
Our fully automatic multi-object tracking algorithm uses ( ) Ts B\vmaz| @
. . . . N——— N v

the same principle as [11]. Each trajectory is estimated by distance term  velocity term

an individual particle filter (tracker), automatically fiail-
ized when a new object is detected and terminated when thgnherey, is the measured velocity of detectia, the pa-

object is Ieavin'g the fieId. of view. At gaph time step Weametersa and 3 represent the proportion of each term
perform: (1) object detection, (2) association of eac_h (de_te (see Sec. 3.4), and, is the radius of the circular search-
tion to a tracker, (3) update of the state of each particlerfilt ing region calculated from the fluid velocity. The distance

according to the motion model and the new detection. term promotes the detections closest to the predictionh Wit
the velocity term, we want to promote low velocities as it
3.1. Object detector allows to have better association in case of beads colsion

Black beads are detected by thresholding the image and tak- S
ing the center of objects having an area close to the meah3. Particle filtering
bead area. As transparent beads appear as faint dark ringsl.:of
. T : a
different shapes because of their neighboring beads, wa us
specific chain of morphological operations to detect thera. W
apply ahconvex operator [21] on the image, then a normalized
cross-correlation with a ring-shape model and finally wepkee
the relevant maxima using an adjusted threshold. The object 11he measured velocity, corresponds to the displacement between the
detector returns a set of detectiails detection position:; and the estimated position at previous time step.

ch tracker is described by a fixed numBérof particles,
aving a statdx,, v,, s, } Wherex,, = (z,y) denotes the

position, v, = (u,v) the velocity ands, the motion state.

We employ the Sequential Importance Resampling filter, also




known as the bootstrap filter [16], to approximate the proba3.4. Implementation details
bility function. For one target, it works as follows: (1) Est

mation of particle states, positions and velocities, (Zjigla | "€ number of particlesV’ was fixed toN' = 100, being a

importance weighting, (3) Normalization of weights, (4)-Re good compromise between computational cost and tracking

sampling, (5) Estimation of final state, position and vetpci €liability. The parameters in equations (1), (2) and (4jeha
of the target. The main difference with [11], is the use ofeen set experimentally and remained the same for the-differ

h €nt experiments used in Sec. 4Xlwas setto 1 in eq. (1). In
eg. (2),a andg were set respectively @75 and0.25 to give
more importance to the distance term. The proportion param-

State model. In motion-based stochastic tracking [22], eters(d,v,n) in eq. (4) were fixed af20,1,1). Therefore,
explicit motion measurements are used to guide predictiongvhen a detection is associated, the particle weight is mainl

In our application, beads have different behaviors acogrdi influenced by its position and also a little by its velocity, t

to their location, VE|OCity and neighborhood. We can diS'reduce the imprecision of the detection position_

tinguish three distinct motion states: resting (not moying  Each motion state in egs. (3) has its own variance for the

rolling (rolling/sliding on others) and saltating (boungion  process noise on position and velocity. The initial paeticl

others). To propagate the particles, we first update thafie st states were set as rolling, and their initial positions agide

and then we apply a motion model to update the position anlies were drawn from a Normal distribution with positions

the velocity. To update the state, we draw the new state agentered at the detection center and velocities centeredlito

cording to a conditional probability table (see Sec. 3.4)e T ye|ocity. To handle the difficulty of dealing with new track-
motion models are: ers, we increased the variances to make the motion model

resting:(z,y): = (z,y)¢—1 + 52-5;95) (3a) more flexible dur.ing the first.3 frames. A trackgr survives
roll only 10 frames without associated detection and is then auto

&, y)e-1 + (W1 At ey (BB) matically terminated.

u)1 + e (3c) For a given particle, the transition from one state to an-

salt other is controlled with conditional probabilities. We leav

2 Y1+ (W0 A ey B ogimated these probabilities on a representative trgis@n

¢ = (u,v)i—1 + sf,‘jfi) (3e) quence. Concerning the particle velocity at the beginnfray o

track, the estimation was set to the measured particle itgloc
wheree(s*l,, ef;’f;), sf,‘jff/) are the process noises on the(j.e. the displacement between the particle position and the
position and:=7°, sfglf} are the process noises on the veloc-estimated position at previous time step).

ity, they are aﬁl inderiendently drawn from zero-mean normal

distributions ;At depends on the framerate of the sequence.

the velocity estimation of a particle as an observation @ t
importance weighting.

rolling: (z,y); =

)

)
saltating:(z,y): =

)

4. RESULTS
Particle weighting. The importance weight,,., for a

particlep of trackertr is given by the conditional likelihood In this section, we present the results of the proposeditrgck

of the new observation given the propagated particle. Givealgorithm with three motion models (3MM) (see Sec. 3.3)

detectiond* associated to the tracker, we have: against two simplified versions using only one motion model:

one with a constant velocity model (LCVM) and the other

with a null velocity model (INVM). These simplified ver-

particle position particle velocity det.conf  sjons can be considered as direct adaptations of Breiten-

] o ] ] (4)  steinet al. [11] algorithm. The results are compared to a

whereZ(tr) is an indicator function that returns 1 if a detec- grqnd truth to have information about the false positives a

tion is associated to the tracker and 0 otherwiSey andn  f5ise negatives. We also use the CLEAR MOT metrics [24]

are set experimentally (see Sec. 3.4). to evaluate the tracking performance.
The particle position (resp. velocity) term calculates the

distance between particle position (resp. velocity) arel th

measured detection position (resp. velocity), and is evalu-1. Experiments and ground truth

?etfr?] chﬁjra?elotr;z a:jglsegltglrjté%%i' dzzingﬁéi;ciq?]ie‘;acﬁiCWe worked ona 1000-frames sequence recorded at 130 fps

position with approximately 400 beads per fra_me (gpout 300 coarse
' and 100 small beads). The sequence is split in two parts, one

Resampling and estimating. After the weighting, the for optimizing the parameters, and the other part for evalua

resampling is used to solve particle degeneracy, namely réton. We created a ground truth on the sequence by selecting

moving the particles of small weight and reproducing thosenanually the detections on each frame. To get the ground

of large weights [23]. Finally, the position and the velgcit truth of trajectories, we applied a simple data associaien

are estimated by averaging the resampled particles. gorithm on the ground truth of detections just created.

Wirp = I(tr) ( 5pN($p —Tg) + 'YpN('Up ) >+77d0(33p)




Algo. Models | % Correct Tracks MOTP FN FP | IdSw. | MOTA
3MM 98.35% | 0.64px | 0.07% | 0.16% 41 99.77%
1CVM [11] 95.05% | 0.77px| 0.09% | 0.17% 23| 99.72%
INVM [11] 89.90% | 0.89px | 0.14% | 0.54% 84 | 99.28%

Table 1. Tracking evaluation results for the three algorithm camfagions. It shows the percentage of correct tracksrore
than 95% of the track is correct) and the CLEAR MOT metricq [@4ch as precision (MOTP), false negative rate (FN), false
positive rate (FP), number of mismatches (Id Sw.) and acguidOTA).
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Fig. 2. Precision score MOTP on transparent beads trackingig. 3. Evaluation of tracking performance on transparent

according to motion state (resting, rolling, saltating)dach  beads for different detection thresholds. The percentége o

algorithm model (3MM, 1CVM, 1NVM). correct tracks (bars, left scale) and the precision scord R1IO
(curves, right scale) are plotted.

4.2. Evaluation of the tracking algorithm ) )
sion MOTP on transparent beads. Again, 3MM performs bet-

In Tab. 1, we present the evaluation of the three tracking after even when the miss detection rate increases due to the in-

gorithms 3MM, 1CVM and 1NVM. The results show that creasing threshold.

3MM is always better than the two others. Especially for the

percentage of correct tracks (a track is considered asatorre 5. CONCLUSION

on the total length if more than 95% of it has no false neg-

atives or mismatches), the 3MM reaches 98.35%. We als@/e have presented a new online particle filter algorithm thase

computed the CLEAR MOT metrics to evaluate the precisioron multiple dynamic models for automatic multi-object tcac

score MOTP (average error in estimated position) and the agg over long sequences. Haviagpriori information about

curacy score MOTA (accounts for all object configuration erthe object mechanical dynamics, we were able to approach

rors made by the tracker, false negatives, false positinds a the real trajectories. This allows us to study bedload paris

mismatches). Here again, the 3MM appears to be the mogiith higher confidence.

precise and accurate. Our multiple motion model based algorithm provides a
In Fig. 2, we plotted the precision MOTP of the track- high tracking precision and accuracy when applied on detec-

ing of transparent beads for each motion state describedrs of different quality. Moreover, the approach has been

in Sec. 3.3. The precision depends on the motion states, tlshown to outperform state-of-the-art algorithms presens

higher the velocity (saltating rolling > resting), the worse single motion model such as constant or null velocity model.

the precision. However, our 3MM performs better on each A possible extension would be to use the state of neigh-

motion state especially on saltation. boring objects as an information to help choosing between
In Fig. 3, we varied the threshold of the transparent beadgotion states and bring more estimation precision. Fipally

detector in order to see the tracking performance with difthe tracking algorithm could be applied on very long se-

ferent levels of detection. It illustrates the influence it quences to observe lower frequency phenomena.

threshold on the percentage of correct tracks and the preci-
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