Automatic detection of photoresist residual layer in lithography using a neural classification approach - Université Jean-Monnet-Saint-Étienne Access content directly
Journal Articles Microelectronic Engineering Year : 2012

Automatic detection of photoresist residual layer in lithography using a neural classification approach

Abstract

Photolithography is a fundamental process in the semiconductor industry and it is considered as the key element towards extreme nanoscale integration. In this technique, a polymer photo sensitive mask with the desired patterns is created on the substrate to be etched. Roughly speaking, the areas to be etched are not covered with polymer. Thus, no residual layer should remain on these areas in order to insure an optimal transfer of the patterns on the substrate. In this paper, we propose a nondestructive method based on a classification approach achieved by artificial neural network for automatic residual layer detection from an ellipsometric signature. Only the case of regular defect, i.e. homogenous residual layer, will be considered. The limitation of the method will be discussed. Then, an experimental result on a 400 nm period grating manufactured with nanoimprint lithography is analyzed with our method.

Dates and versions

ujm-01390616 , version 1 (02-11-2016)

Identifiers

Cite

Issam Gereige, Stéphane Robert. Automatic detection of photoresist residual layer in lithography using a neural classification approach. Microelectronic Engineering, 2012, 97, pp.29-32. ⟨10.1016/j.mee.2012.02.032⟩. ⟨ujm-01390616⟩
21 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More