Online multi-model particle filter-based tracking to study bedload transport
Hugo Lafaye de Micheaux, Christophe Ducottet, Philippe Frey

To cite this version:

HAL Id: ujm-01491863
https://hal-ujm.archives-ouvertes.fr/ujm-01491863
Submitted on 17 Mar 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
ONLINE MULTI-MODEL PARTICLE FILTER-BASED TRACKING TO STUDY BEDLOAD TRANSPORT

Hugo Lafaye de Micheaux1,2*, Christophe Ducottet1 and Philippe Frey2

1Université Lyon, UJM-Saint-Étienne, CNRS, UMR5516, Laboratoire Hubert Curien, Saint-Etienne, France
2Université Grenoble Alpes, Istra, UT ETGR, Saint-Martin-d’Hères, France
*E-mail: hugo.lafaye-de-micheaux@irstea.fr

1. Context & Objectives
Global aim: studying bedload transport thanks to experiments with two-size beads in a water flow.

- Main objective: track beads over long time sequences to better understand size segregation responsible for complex morphology structures.

The idea: propose an online particle filter-based algorithm integrating several improvements:
1. Include an adapted multiple motion models
 - with known mechanical dynamics to better anticipate bead locations.
2. Exploit detector confidence to handle missing detections.

2. Experimental setup

3. Multi-model tracking algorithm

Stage 1: Object detector
- Use specific morphological operations (hconvex, cross-correlation, ...)
- Exploit detector confidence to handle miss-detections (based on [2])

Stage 2: Data association
- Perform greedy algorithm on matching costs

Stage 3: Particle filtering
- Principle: use Sequential Importance Resampling (SIR) with an internal state including motion state, position (x,y) and velocity (u,v)
 1. Draw a new state according to conditional probability table
 2. Propagate the particles using a motion-based stochastic tracking (as in [3]) with 3 motion models:
 - Resting - not moving
 - Rolling - sliding on other
 - Saltating - bouncing on others
 3. Compute particle weighting
 4. Normalize weights and resample particles with SIR method
 5. Estimate position and velocity by averaging resampled particles

4. Results

- Creation of a ground truth dataset of 1000 images for the tests
- Parameters are fixed on half of the dataset

- Tracking evaluation results on 3 algorithm configurations:
 - Algo. Models: % Correct Tracks, MOTP, FN, FP, Id Sw., MOTA
 - 3MM: 98.35%, 0.64px, 0.07%, 0.16%, 4, 99.77%
 - LVM [2]: 95.05%, 0.77px, 0.09%, 0.17%, 23, 99.72%
 - INVM: 89.90%, 0.89px, 0.14%, 0.54%, 84, 99.28%
 - 3MM = 3 motion models ; LVM = 1 constant velocity model ; INVM = 1 null velocity model

- Precision score MOTP according to motion state:

- Correct tracks and MOTP for different detection thresholds:

5. Conclusions & Perspectives

- New online particle filter-based tracking algorithm based on multiple dynamic models:
 - Input of object mechanical dynamics helps approaching real trajectories.
 - Allows studying bedload transport with higher confidence.

- Our multiple motion model based algorithm provides high tracking precision and accuracy with different detector qualities:
 - Outperforms single dynamic models.
 - Effect of inaccurate detections reduced by detector confidence.

Perspectives: Use configuration and state of neighboring objects as an information to help choosing between motion states.

Acknowledgements
This research is funded by Irstea, labex OCIS@2020, ANR and the Rhône-Alpes region as part of its higher education, research and innovation regional Strategy (Environment Academic Research Community).

References