
HAL Id: ujm-01570128
https://ujm.hal.science/ujm-01570128

Submitted on 28 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evaluation of AIS-20/31 compliant TRNG cores
implemented on FPGAs

Oto Petura, Ugo Mureddu, Nathalie Bochard, Viktor Fischer, Lilian Bossuet

To cite this version:
Oto Petura, Ugo Mureddu, Nathalie Bochard, Viktor Fischer, Lilian Bossuet. Evaluation of AIS-20/31
compliant TRNG cores implemented on FPGAs. 6th Conference on Trustworthy Manufacturing and
Utilization of Secure Devices (TRUDEVICE 2016), Barcelona, 14-16 November, 2016, Nov 2016,
Barcelone, Spain. �ujm-01570128�

https://ujm.hal.science/ujm-01570128
https://hal.archives-ouvertes.fr

Evaluation of AIS-20/31 compliant TRNG cores
implemented on FPGAs

Oto Petura, Ugo Mureddu, Nathalie Bochard, Viktor Fischer, Lilian Bossuet
Hubert Curien Laboratory, UMR 5516 CNRS,

Jean Monnet University Saint-Etienne
18, rue Pr. Lauras, 42000 Saint-Etienne, France

email: (oto.petura, ugo.mureddu, nathalie.bochard, fischer, lilian.bossuet)@univ-st-etienne.fr

Abstract—FPGAs are widely used to integrate cryptographic
primitives, algorithms, and protocols in cryptographic systems-
on-chip (CrySoC). As a building block of CrySoCs, True Random
Number Generators (TRNGs) exploit analog noise sources in
electronic devices to generate confidential keys, initialization
vectors, challenges, nonces, and random masks in cryptographic
protocols. TRNGs aimed at cryptographic applications must
fulfill the security requirements defined in the German Federal
Bureau for Information Security’s (BSI) recommendations AIS-
20/31, which has become a de facto standard in Europe. Many
TRNG cores have already been published, only a few of which
are suitable for FPGAs and even fewer comply with AIS-20/31.
Here we present the results of the implementation of AIS-20/31
compliant TRNG cores in three FPGA families: Xilinx Spartan 6,
Altera Cyclone V and Microsemi SmartFusion 2. In addition to
common design parameters like area, bit rate and power/energy
consumption, we compare and discuss the feasibility of generator
cores in different FPGAs and the statistical quality of their
output. These results will help designers select the best generator
and the device family to match the requirements of the data
security application. To ensure reproducibility of the results, the
open source VHDL code of all generators adapted to individual
families can be downloaded from the dedicated web page.

I. INTRODUCTION

True Random Number Generators (TRNG) are used in
cryptography to generate confidential keys, initialization vec-
tors, challenges, nonces, and random masks in side channel
attack countermeasures. They exploit intrinsic noise sources
in electronic devices as a source of randomness.

FPGAs are widely used to integrate cryptographic primi-
tives, algorithms and protocols in the cryptographic systems
on chip (CrySoC). As a building block of the CrySoC, the
TRNG must meet strict security requirements [1].

TRNGs are typically composed of an analog physical source
of randomness, a digitizer, and an optional entropy condition-
ing block. The source of randomness, digitization, and the
entropy harvesting mechanism depend to a large extent on the
selected technology, a standard or even a recommended TRNG
does not exist. Depending on the characteristics of the source
of randomness and the quality of the digital noise, designers
select the entropy conditioning method that will enhance the
statistical properties of generated numbers.

In the past, during the design and the security evaluation
and certification process, the principle of the TRNG and its
implementation were only evaluated statistically: the generated
numbers were tested using standard test suites.

However, this approach is not suitable for modern data
security systems for several reasons: 1) post-processing can
mask considerable weaknesses in the source of randomness; 2)
generic statistical tests can only evaluate the statistical quality
of the numbers that are generated and not their entropy; 3)
high-end standard statistical tests are complex and hence both
expensive and slow, plus they require huge data sets. Conse-
quently, they are only executed occasionally or on demand and
only on selected sets of data of limited size.

The German Federal Office for Information Security re-
cently proposed a methodology of evaluation of random num-
ber generators (AIS-20/31) [2]. Currently, all TRNGs aimed
at cryptographic applications that require a security certificate
for use in European union must comply with AIS-20/31.

Many TRNG cores have already been published, but only a
few of them are suitable for FPGAs, and even fewer comply
with AIS-20/31. Our aim was to select such generators and to
fairly evaluate the difficulties related to their implementation in
different FPGA technologies, their area, output bit rate, power
requirements, and the statistical quality of their output.

To compare TRNG principles and their implementations in
different FPGA families as fairly as possible, the evaluation
boards should have the same topology and should use as few
components introducing deterministic noise as possible (e.g.
should be powered using low noise power supplies).

The paper is organized as follows. In Section II, we describe
how we selected AIS-20/31 compliant TRNG cores that are
suitable for implementation in FPGAs. In Section III, we
describe the strategy of implementation and evaluation of the
TRNG cores. In Section IV, we describe the implementation of
selected generators in the selected FPGA families. In Section
V, we discuss the results and propose selection criteria to help
designers select an appropriate design in the future. Section
VI concludes the paper and describes the future outlook.

II. SELECTION OF TRNG CORES

Our objective was to select the TRNG principles that are
feasible in all recent FPGA families, so the design must
be purely digital. Furthermore the selected principles must
comply with the AIS-20/31, which requires a stochastic model.

We pre-selected TRNG cores that use oscillating circuitries:
single-event ring oscillators (i.e. standard ring oscillators) [3],
[4], [5], multi-event ring oscillators with signal collisions

(i.e. transition effect ring oscillators) [6], multi-event ring
oscillators without signal collisions (i.e. self-timed rings) [7],
and phase-locked loops (PLLs) [8]. Consequently, all of them
should be feasible in recent and future families of FPGAs.
They all use simple and comprehensible sources of random-
ness, their raw random signal is available outside the generator,
and the stochastic model of the generator exists or is feasible.
Therefore, we can conclude that all of them comply with the
AIS-20/31 requirements.

III. STRATEGY FOR THE IMPLEMENTATION AND
EVALUATION OF TRNG CORES

Our objective was to use the same hardware configuration
for all TRNG cores and for different FPGA families. The
hardware/software system we used had three components:
an FPGA device with the target of evaluation (TOE), the
acquisition board and the PC running the software. The TOE
implemented in FPGA devices was connected to the acquisi-
tion card using a simple serial interface – a serial data stream
and a data strobe signal was sent to the acquisition board
via two low voltage differential signaling (LVDS) links. The
generated bit streams were saved in a 4-MB SRAM memory
of the acquisition card and sent to the PC using the USB bus.

To reduce the vulnerability of the generators to external
manipulations, we did not use external clocks: all the clock
signals were generated inside the TOE, for example, using a
ring oscillator with appropriate topology.

We preselected three representative FPGA families: Xilinx
Spartan 6, Altera Cyclone V, and Microsemi SmartFusion 2.

Since expressing logic area in slices or adaptive logic
modules (ALMs), as made often by FPGA vendors, would
not allow the fair comparison of designs, we characterize the
area of generators using the number of occupied look-up tables
(LUTs) and registers.

One of the parameters used for design evaluation is power
consumption. The power consumption of TRNGs is relatively
low and is mostly comparable to, or even lower than, the
standby power consumption of an empty device. For this
reason, we first implemented a reference design in which an
input static signal just crossed the device and only an output
multiplexer was implemented inside it (the same multiplexer
was used later to keep the generator running, while blocking its
output to the input/output circuitry). With this small reference
project the Spartan 6, Cyclone V, and SmartFusion 2 devices
consumed 3.5 mW, 29.7 mW, and 12.5 mW, respectively.
This power was subtracted from the total power consumption
measured in all the experiments. The results presented in the
following sections are thus the net power consumption of the
designs we tested.

To evaluate the statistical quality of the generated numbers,
we used Procedure B of the AIS-20/31, which is designed to
test raw random signals. We used test T8 of this procedure for
a rough estimation of the entropy rate. For a rigorous entropy
estimation a stochastic model of the generator should be used.
This is out of the scope of our paper.

Since all the presented TRNG designs have many degrees
of freedom, in our comparisons, we chose the parameters
(number of delay elements, division factors, etc.) giving the
highest entropy rate at the output.

IV. IMPLEMENTATION OF SELECTED TRNG CORES IN
FPGA

A. Ring Oscillator Based Elementary TRNG

The ring oscillator based elementary TRNG (ERO-TRNG)
was prosed and modeled in [3]. The block diagram of the
ERO-TRNG as implemented in FPGAs is depicted in Fig. 1.

RO1
D
 Q
 clkFrequency divider by K

 clk

Digital
noise

Clk

...

RO2

'1'

...

1 N-1

1 N-1

Fig. 1. Architecture of the ERO-TRNG core

The generator uses two identical ring oscillators (RO1 and
RO2) as sources of randomness. The output of one ring (a jit-
tery clock signal) is sampled in a D flip-flop after a sufficiently
long accumulation period derived from the second clock signal
using a frequency divider by K (a 17-bit synchronous counter).
Let us note that thanks to the use of two identical oscillators,
the impact of the global sources of randomness, which can be
easily manipulated, is significantly reduced.

The number of elements of the ring (N) was chosen to
get approximately the same clock frequency (300 MHz) in all
families: 3 elements (one NAND gate and 2 buffers) were used
in Spartan 6 and 5 elements in Cyclone V and SmartFusion 2
family.

The lower entropy bound defined in [3] can be adapted to
the elementary TRNG from Fig. 1 as:

Hmin = 1− 4

π2ln(2)
e

−π2σ2thKT2

T3
1 , (1)

where σ2
th is the variance of the jitter due to thermal noise, K

is the frequency division factor and T1, T2 are periods of the
clock signals generated by RO1 and RO2, respectively. Let us
note that the oscillation frequency and the size of the jitter
differ in each FPGA family, consequently parameter K and
hence the output bit rate also differ.

Clock periods of the ring oscillators were about 3 ns in all
the devices. The total period jitter exploited in the TRNGs
was then approximately 4 ps, 3 ps, and 8 ps for the Spartan
6, Cyclone V, and SmartFusion 2 device, respectively. The
frequency division factor K was set up according to Eq. (1)
to 80 000, 135 000, and 20 000, respectively.

The two ring oscillators were placed and routed manually
in order to ensure the repeatability of the design. Although
both rings were placed in close vicinity, apparently, they did
not lock.

B. Ring Oscillator Coherent Sampling Based TRNG

The coherent sampling ring oscillator based TRNG (COSO-
TRNG) was first proposed in [4]. The block diagram of the

COSO-TRNG core implemented in our devices is depicted in
Fig. 2.

D
 Q
 clk

s1 Beat
signal

s2

s3
RO1

...
1 N-1

...
RO2

'1'

D
 Q
 clk

Digital
noise

Clk

D Q

 clk nQ
 reset

1 N-1

Fig. 2. Architecture of the COSO-TRNG core

The generator uses two oscillators, which have the same
number of elements and their topology (placement of the delay
elements) is also the same. The clock signal s1 was sampled
in a D flip-flop on rising edges of the clock signal s2. The
resulting beat signal was then used to flip the T flip-flop
(a 1-bit counter). To extract randomness from the jitter, the
difference between two clock periods must fulfill the following
condition:

∆T <
3

√
σ2
T · T = ∆Tmax . (2)

Fulfilling this condition is not an easy task. We measured the
clock period T and the standard deviation of the period jitter
to compute ∆Tmax . Then we tried different placements and
routings to find ∆T smaller than ∆Tmax . In our case, we
obtained satisfying results with:

• N = 8 in Spartan 6 giving T = 6.92 ns, σ ∼ 4 ps,
∆Tmax ∼ 50 ps

• N = 6 in Cyclone V giving T = 3.17 ns, σ ∼ 2.5 ps,
∆Tmax ∼ 30 ps

• N = 10 in SmartFusion 2 giving T=5.4 ns, σ ∼ 8 ps,
∆Tmax ∼ 70 ps

C. Multi-Ring Oscillator Based TRNG

The multi-ring oscillator based TRNG (MURO-TRNG) and
its stochastic model were originally proposed in [5]. The block
diagram of the MURO-TRNG core architecture implemented
in our devices is depicted in Fig. 3.

Digital
noise

.

.

.
 .

 clkref

 D-FF

D
 Q
 clk

RO1

'1' ...

RO2

'1' ...

 D-FF

D
 Q
 clk

 D-FF

D
 Q
 clk

ROm

'1' ...

 D-FF

D
 Q
 clk

ROr

'1' ...
Clk

Frequency divider by K

 clk_in

Fig. 3. Architecture of the MURO-TRNG

The generator uses m ring oscillators as sources of ran-
domness. Assuming that the oscillators are independent, their
phase is uniformly distributed. Based on the assumption of
uniformity, the number of rings must fulfill the following
condition:

m >
T

σacc
, (3)

where T is the mean value of the clock period and σacc
is the standard deviation of the jitter accumulated during
the sampling period. Since the clock phases are uniformly
distributed, the probability that the D flip-flop at the output
of the generator will sample some clock edges (out of m
edges theoretically available at the XOR gate output) is also
uniformly distributed.

However, the authors of [9] showed that output of a single
m-input XOR gate cannot follow too many high-speed input
signals. They proposed using additional flip-flops (dashed lines
in Fig. 3), which resolved the problems concerning the speed
of the XOR gate. Since the authors of [10] proved that the
stochastic model remains valid, we used this modified MURO-
TRNG architecture in our study.

D. Coherent Sampling Based TRNG Using PLLs

The coherent sampling based TRNG which uses PLLs
(PLL-TRNG), was first published in [8] and the model of the
generator was proposed in [11]. The block diagram of the
PLL-TRNG core implemented in our devices is depicted in
Fig. 4.

Digital
noiseD Q

clk

PLL1
K

M1
/ K

D1clkin

~ 200 MHzRO
...'1'

1 N-1 PLL2
K

M2
/ K

D2
Counter
0 ÷K

D
- 1

Clk

clkjit

clkref

D Q

clk

Fig. 4. Architecture of the PLL-TRNG core

The generator is based on the fact that using PLLs, the
frequencies of two generated clock are mutually related. Since
fjit = fin · KM1/KD1 and fref = fin · KM2/KD2, the
relationship between fjit and fref is as follows:

fjit = fref ·
KM1

KD1
· KD2

KM2
= fref ·

KM

KD
. (4)

Thanks to the coherent sampling principle, the samples of the
jittery clock signal obtained in the D flip-flop at the rising
edges of the reference clock signal are uniformly distributed
over the translated period Tjit. The distance between the
samples is then ∆ = Tjit/KD and KD samples must be XOR-
ed to obtain one output bit (see Fig. 4).

The output bitrate R of the generator and the sensitivity to
the jitter S are defined as:

R = fref/KD, (5)

S = ∆−1 = KD/Tjit. (6)

To obtain high entropy random bits, the distance between the
samples ∆ must fulfill the following condition:

∆� σr, (7)

where σr is the relative jitter between the two generated
clocks. According to Eq. (5) and (6), the objective of a
designer is to make ∆ as small as possible, while maintaining
the output bit rate (R) in an acceptable range by setting
the input frequency (fin) and the multiplication and division
factors of both PLLs.

We followed the same strategy to determine the multipli-
cation and division factors for given families. The frequency
of the input clock signal generated by a ring oscillator was
approximately 200 MHz in all cases. The parameters of PLLs
and the distance between samples (∆) are presented in Table I.

TABLE I
PARAMETERS OF PLLS AND CORRESPONDING DISTANCE BETWEEN

SAMPLES (∆) IN SELECTED FPGA FAMILIES

FPGA PLL1 PLL2 Total ∆

KM KD KM KD KM KD [ps]

Spartan 6 37 17 17 7 1 377 259 4.82
Cyclone V 31 29 23 18 667 558 4.25

SmartFusion2 74 162 18 22 729 407 9.10

E. Transition Effect Ring Oscilaltor Based TRNG

The transition effect ring oscillator based TRNG (TERO-
TRNG) was proposed in [6] and its stochastic model in [12].
The block diagram of the TERO-TRNG core implemented in
our FPGA devices is depicted in Fig. 5.

. . .

. . .

ctrl

1 N-1

1 N'-1

Ring oscillator 7-bit counter

D Q

 clk nQ
 reset

D Q

 clk

Digital noise

Clock

Fig. 5. Architecture of the TERO-TRNG core

The transition effect ring oscillator (TERO) is a multi-event
ring oscillator with collisions built as a loop of logic gates.
The loop contains an even number of inverting gates and any
number of non-inverting gates. Because of the even number
of inverting gates, the oscillator has to be restarted regularly
– the two events created after each restart circulate inside the
loop until a collision occurs, during which the edge that moves
faster reaches the slower one.

The difference in the speed of circulating events is caused
by differences in delays between inverters in loop branches and
by analog phenomena in inverters and buffers. The circulating
events create temporary oscillations that disappear after the
collision.

The heart of the TERO-TRNG is the TERO cell, which is
followed by a counter (in Fig. 5, the counter is represented by
a T flip-flop) and an output data register.

The output of the counter represents realizations of the
random variable (i.e. the number of oscillations in subsequent
control periods). The control signal, which periodically restarts
the TERO cell, is generated using a conventional ring os-
cillator. The control signal defines the output bit rate of the
generator.

F. Self Timed Ring Based TRNG

The self timed ring (STR) is a multi-event oscillator without
signal collisions. The first TRNG using STRs was proposed
in [7] and its model in [13]. The block diagram of the STR-
TRNG core implemented in our devices is depicted in Fig. 6.

Digital
noise

 .
.

D
 Q
 clk

1

i

L

…

…

…

…
Ci

C1

CL

s1

si

sL
STR

RO
...'1'

1 N

D
 Q
 clk

D
 Q
 clk

D
 Q
 clk

Clock

Fig. 6. Architecture of the STR-TRNG core

The STR is composed of L stages, each consisting of a
Muller gate and an inverter. The STR stages communicate
using the two-phase handshake protocol. In contrast to inverter
ring oscillators, several events can propagate without colliding
thanks to this handshake protocol, which enables precise, built-
in phase control of the internal clock signals.

The ring is initialized with E events which start propagating
during a transient state. Independently of their initial positions
and thanks to two analog mechanisms inferred in the ring
(the Charlie and the drafting effects), they end up in a steady
state.They either: form a cluster which propagates in the ring
(burst oscillation mode), or spread out around the ring and
propagate with a constant temporal spacing (evenly-spaced
oscillation mode). Both these oscillation modes are stable and
depend on the static parameters of the ring (mainly the ring
occupancy E/(L−E) with respect to the ratio of forward and
reverse static delays).

If E events are confined in L stages and spread evenly
around the ring, the phase shift between two stages separated
by n stages is [7]:

ϕn = n× E

L
× 180. (8)

If the number of events and the number of stages are co-
prime, the STR exhibits as many different equidistant phases
as the number of stages. In this case, if T is the oscillation
period, the phase resolution can be expressed as [13]:

4ϕ =
E

2L
. (9)

The oscillation period of an STR does not depend on the
number of its stages, but on the number of propagating events.
It is therefore possible to increase the number of ring stages
(L) while keeping the frequency constant. Consequently, the
phase resolution of an STR can theoretically be set as finely
as needed.

In our STR-TRNG, the sampling clock was generated by
an additional ring oscillator. Each STR stage was sampled in
the D flip-flop. The outputs of the flip-flops were XOR-ed
together and the output of the XOR gate was sampled again
in another D flip-flop at the same frequency. To guarantee

a sufficient entropy rate at the output of the generator, the
following condition must be fulfilled:

4ϕ < σacc, (10)

where 4ϕ is the phase resolution defined in Eq. (9) and σacc
is the standard deviation of the accumulated jitter.

V. DISCUSSION ON FPGA IMPLEMENTATION OF
SELECTED TRNG CORES

In the following paragraphs, we evaluate and briefly discuss
the first results obtained in three selected FPGA families.

We evaluated feasibility and repeatability as follows:

• Score 5 : no need of manual intervention. The results are
independent of the device family.

• Score 4 : simple manual setup (e.g. placement). The
results are independent of the device family.

• Score 3 : manual per-family optimization needed.
• Score 2 : complex manual setup. The results are repeat-

able within the device family.
• Score 1 : per-device manual setup.
• Score 0 : the results are not repeatable.

Table II summarizes the results of the implementation of
the selected TRNG designs. First of all, it can be observed
that the area occupied by individual generators does not differ
significantly between the families, regardless of the size of
the LUT. This can be explained by the fact that each delay
element of rings is implemented using exactly one LUT.

It can be observed that the ERO-TRNG core occupies very
small area and consumes relatively little power. It is very easy
to implement (highest feasibility and repeatability), but it has
a very small bit rate.

The COSO-TRNG core occupies the smallest area and con-
sumes the least power. At the same time, it has an interesting
bit rate. It also reaches a high entropy rate and relatively
high entropy & bit rate product. However, it is difficult to
implement – it must be placed manually in each individual
device (low feasibility and repeatability). This disadvantage
becomes eliminatory in most practical applications.

The MURO-TRNG core is relatively easy to implement and
it features relatively high bit rate at the cost of the area. It has
the second highest entropy & bit rate product, but the energy
efficiency is not remarkable.

The area occupied by the PLL-TRNG core seems to be
small, however, the area occupied by the PLLs is not taken
into account in Table II. The main advantage of this generator
is related to the fact that PLLs are very well isolated from the
rest of the device and therefore more robust.

The TERO-TRNG core seemed to be very promising, but
the need of the manual set up of the TERO cell represents an
important handicap and its weakest point.

We obtained very interesting results with the STR-TRNG
independently from the family. This TRNG core has extremely
high bit rate and a high entropy and thus also a very high
entropy & bit rate product. While it has the highest power

consumption, it maintains a very high energy efficiency. Unfor-
tunately, it occupies huge area and it needs precise placement
and routing.

When considering the power and energy consumption, the
energy efficiency parameter can be very useful to estimate the
energy that must be spent for generating one random bit. This
is clearly visible in the case of the STR-TRNG.

On the other end, the use of the entropy & bit rate product
does not seem to bring any significant advantage to our
evaluation. However, this fact is caused by the strategy of
our design: to obtain the highest entropy possible for each
TRNG design. We are convinced that if the entropy rate per
bit is not close to one (which is the case in many practical
applications), the entropy & bit rate product can help in finding
the compromise between the entropy rate and the bit rate.

If we compare individual generators from the point of
view of different parameters, we can definitely observe that
a generator giving the best results in all TRNG parameters
does not exist. It can be seen that the ERO-TRNG core wins
in feasibility and repeatability, but loses in the bit rate. On the
other hand, the COSO-TRNG core obtains perfect results in
area, but very bad score in feasibility and repeatability. The
MURO-TRNG core can represent a compromise between the
bit rate and feasibility, but can be weak from the security
point of view – the rings can lock to each other and decrease
significantly the entropy. The STR-TRNG core wins in the bit
rate, energy efficiency, and entropy & bit rate product and it
is certainly the best candidate for the high-speed applications,
where the power consumption and difficulty of design are less
important.

VI. CONCLUSIONS

In this paper, we presented and discussed implementation
of selected TRNG cores in three different FPGA families.
We showed that all cores comply with the stringent security
requirements of the AIS-20/31 standard: they are simple and
comprehensible, their stochastic model exists or at least is
feasible, and the raw random signal is available for testing.

The results confirm that all the preselected TRNG designs
are feasible in all selected families. However, two of evaluated
designs are not suitable for use in practice in their current
form: the COSO-TRNG and the TERO-TRNG require some
manual intervention (placement and routing) for each device
individually.

The results also confirm that no ideal TRNG exists – the
most suitable generator must be selected according to require-
ments of the data security application and some compromise
must always be done.

It is important to stress that once the designer selects the ap-
propriate generator core, he still has many degrees of freedom
in the design and he can adapt the final choice of parameters
to the practical needs of the application. The proposed TRNG
evaluation parameters (energy efficiency and entropy & bit rate
product) can be helpful in this task. Other combined metrics
such as area & power consumption product can also be used.
However it is more valuable for TRNG implementation in

TABLE II
SUMMARY OF IMPLEMENTATION RESULTS OF THE SELECTED TRNGS

TRNG type FPGA Area Power cons. Bit rate Efficiency Entropy Entropy * Bit rate Feasib.
device (LUT/Reg) [mW] [Mbits/s] [bits/µWs] per bit & Repeat.

Spartan 6 46/19 2.16 0.0042 1.94 0.999 0.004
ERO Cyclone V 34/20 3.24 0.0027 0.83 0.990 0.003 5

SmartFusion 2 45/19 4 0.014 3.5 0.980 0.013
Spartan 6 18/3 1.22 0.54 442.6 0.999 0.539

COSO Cyclone V 13/3 0.9 1.44 1 600 0.999 1.438 1
SmartFusion 2 23/3 1.94 0.328 169 0.999 0.327

Spartan 6 521/131 54.72 2.57 46.9 0.999 2.567
MURO Cyclone V 525/130 34.93 2.2 62.9 0.999 2.197 4

SmartFusion 2 545/130 66.41 3.62 54.5 0.999 3.616
Spartan 6 34/14 10.6 0.44 41.5 0.981 0.431

PLL Cyclone V 24/14 23 0.6 43.4 0.986 0.592 3
SmartFusion 2 30/15 19.7 0.37 18.7 0.921 0.340

Spartan 6 39/12 3.312 0.625 188.7 0.999 0.624
TERO Cyclone V 46/12 9.36 1 106.8 0.987 0.985 1

SmartFusion 2 46/12 1.23 1 813 0.999 0.999
Spartan 6 346/256 65.9 154 2 343.2 0.998 154.121

STR Cyclone V 352/256 49.4 245 4 959.1 0.999 244.755 2
SmartFusion 2 350/256 82.52 188 2 286.7 0.999 188.522

application specific integrated circuits (ASICs) which we did
not target.

Output parameters of all the tested generators, such as bit
rate, power consumption, entropy, etc., depend on the under-
lying hardware to a great extent. Using the same evaluation
boards in the same conditions is very important for a fair
comparison.

Presented results, together with the open-source VHDL
codes which the designer can download from1, can help
them to make their choice and test the designs on their own
hardware.

We believe that most of our conclusions can be extended to
implementation of presented TRNG cores in ASICs.

VII. ACKNOWLEDGEMENT

This work has received funding from the European Union’s
Horizon 2020 research and innovation programme in the
framework of the project HECTOR (Hardware Enabled Crypto
and Randomness) under grant agreement No 644052.

REFERENCES

[1] V. Fischer, “A closer look at security in TRNGs design,” in Pro-
ceedings of Constructive Side-Channel Analysis and Secure Design –
COSADE’12, ser. LNCS, vol. 7275. Springer-Verlag Berlin Heidelberg,
2012, pp. 167–182.

[2] W. Killmann and W. Schindler, “A proposal for: Functionality classes
for random number generators, version 2.0,” 2011. [Online]. Available:
https://www.bsi.bund.de/EN/Home/home node.htm

[3] M. Baudet, D. Lubicz, J. Micolod, and A. Tassiaux, “On the security
of oscillator-based random number generators,” Journal of Cryptology,
vol. 24, no. 2, pp. 398–425, 2011.

[4] P. Kohlbrenner and K. Gaj, “An embedded true random number ge-
nerator for FPGAs,” in Proceedings of the 2004 ACM/SIGDA 12th
international symposium on Field programmable gate arrays. ACM,
2004, pp. 71–78.

1https://labh-curien.univ-st-etienne.fr/cryptarchi/HECTOR TRNG designs

[5] B. Sunar, W. Martin, and D. Stinson, “A Provably Secure True Random
Number Generator with Built-In Tolerance to Active Attacks,” IEEE
Transactions on Computers, pp. 109–119, 2007.

[6] M. Varchola and M. Drutarovsky, “New high entropy element for FPGA
based true random number generators,” in Cryptographic Hardware and
Embedded Systems, CHES 2010. Springer, 2010, pp. 351–365.

[7] A. Cherkaoui, V. Fischer, A. Aubert, and L. Fesquet, “A self-timed ring
based true random number generator,” in IEEE International Symposium
on Asynchronous Circuits and Systems (ASYNC 2013), 2013, pp. 99–106.

[8] V. Fischer and M. Drutarovsky, “True random number generator em-
bedded in reconfigurable hardware,” in Proceedings of the International
Workshop on Cryptographic Hardware and Embedded Systems (CHES
2002), ser. LNCS, vol. 2523, Redwood Shores, CA, USA. Springer
Verlag, 2002, pp. 415–430.

[9] K. Wold and C. Tan, “Analysis and enhancement of random number
generator in FPGA based on oscillator rings,” in Proceedings of the
International Conference on Reconfigurable Computing and FPGAs
(ReConFig’08), 2008, pp. 385–390.

[10] N. Bochard, F. Bernard, V. Fischer, and B. Valtchanov, “True-
randomness and pseudo-randomness in ring oscillator-based true random
number generators,” International Journal of Reconfigurable Computing,
vol. 879281, no. 2010, pp. 1–13, February 2010.

[11] F. Bernard, V. Fischer, and B. Valtchanov, “Mathematical model
of physical RNGs based on coherent sampling,” Tatra Mountains
Mathematical Publications, vol. 45, no. 1, pp. 1–14, 2010. [Online].
Available: http://tatra.mat.savba.sk/Full/45/01be-f-v.pdf

[12] P. Haddad, V. Fischer, F. Berdnard, and J. Nicolai, “A Physical Approach
for Stochastic Modeling of TERO-based TRNG,” in Proceedings of
the International Workshop on Cryptographic Hardware and Embedded
Systems (CHES 2015), Saint-Malo, France, ser. LNCS, vol. 9293.
Springer Verlag, 2015, pp. 357–372.

[13] A. Cherkaoui, V. Fischer, L. Fesquet, and A. Aubert, “A very high
speed true random number generator with entropy assessment,” in
Cryptographic Hardware and Embedded Systems (CHES 2013), ser.
LNCS, G. Bertoni and J.-S. Coron, Eds., vol. 8086. Springer, 2013,
pp. 179–196.

