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Abstract—Phase-locked loop (PLL) based true random number
generator (TRNG) is very well suited for security applications
using field programmable gate arrays (FPGAs) because most
of FPGAs feature hardwired PLL blocks. PLL based TRNGs
(PLL-TRNGs) are easy to implement and do not require manual
placement or routing. The design of such TRNGs is also highly
portable within the same device family. This is not the case
in many other TRNG designs. However, the design of a PLL-
TRNGs is not a trivial task. Due to many PLL parameters,
which need to be fine tuned to achieve required security and
speed requirements, an exhaustive design space exploration is
practically not feasible. Thus, the designers are required to
go through many trial and error cycles of manual parameter
tweaking and the results are still not guaranteed to be optimal.
In this paper, we use a genetic algorithm (GA) based optimization
to generate a suitable configuration of the PLL-TRNG, such that
it is secure and reaches high output bit rate. GA optimization
allows to take into account physical limits of the PLL, such
as input/output frequency, and maximum voltage controlled
oscillator (VCO) frequency, which avoids invalid configurations
and reduces the development time. The method has proven to be
very efficient and it significantly reduces the design time without
compromising the security. All the presented configurations were
tested on recent FPGA families and the statistical quality of the
resulting TRNG configurations was verified using the AIS 31 test
suite.

I. INTRODUCTION

True random number generators (TRNGs) constitute an
essential part of cryptographic systems. The statistical quality
and unpredictability of the random output, but also robustness
of the generator and ability to detect attacks guarantee the
security. Our goal was to design a TRNG, which can be easily
implemented in field programmable gate arrays (FPGAs) and
fulfill above mentioned security requirements.

We selected the phase locked loop (PLL) based TRNG
(PLL-TRNG) because of its simple and comprehensive design
and because of the fact that PLLs in FPGAs are physically
isolated from the rest of the device, which contributes to data
security. In this context, our primary goal was to select the
best parameters of the generator, which will ensure the highest
entropy rate at its output, and to secure the generator using an
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AIS 31 compliant approach based on the use of the stochastic
model.

The PLL-TRNG was first proposed by Fischer and Dru-
tarovsky in [1] and then enhanced by Fischer et al. in [2]. A
simple stochastic model of this generator was first proposed
by Simka et al. in [3]. More rigorous and more precise model
was proposed later by Bernard et al. in [4].

In the recent survey published in [5], the PLL-TRNG
achieved insufficient entropy rate as well as quite low output
bit rate. We aim to optimize the design of the generator using a
genetic algorithm (GA) in order to increase both of the above
mentioned parameters as well as to reduce the design time. We
then test our optimized implementation on Altera Cyclone V,
Xilinx Spartan-6, and Microsemi SmartFusion R©2 FPGAs.

The paper is organized as follows. In Section II, we describe
basic architecture of the PLL-TRNG, its characteristics and
difficulties related to its design. In Section III, we show the
application of the GA on optimization of parameters of this
kind of generators. In Section IV, we present the results
obtained using selected GA and we discuss the obtained results
in Section V. Finally, Section VI concludes the paper.

II. THEORETICAL BACKGROUND OF THE PLL-TRNG
The core of the PLL-TRNG is depicted in Fig. 1. The

source of randomness exploited by the TRNG is the jitter of
the clock signal entering the PLL (clkref ) and the tracking
jitter introduced by the PLL itself. The clock signal generated
by the PLL is sampled by a D flip-flop (DFF) and then KD

subsequent samples are XOR-ed together in the decimator to
make one random bit (KM and KD are multiplication and
division factors of the PLL, respectively).

PLL
(KM, KD)

clkref
DFF

clkjit Decimator
(KD)

TRNGoutDFFout

Fig. 1. General architecture of a PLL- TRNG

If the value of KD is odd, the output bit rate of the generator
is defined as [1]:

R =
fref
KD

(1)

and the sensitivity to the jitter is equal to

S =
KD

Tjit
. (2)



TABLE I
PLL SPECIFICATIONS FOR ALTERA CYCLONE V, XILINX SPARTAN-6, AND MICROSEMI SMARTFUSION R©2 FPGA FAMILIES

Parameter Cyclone V Spartan-6 SmartFusion R©2 Description
Min Max Min Max Min Max

fin [MHz] 5 500 19 540 1 200 Input frequency of the PLL
M 1 512 1 552 1 256 Multiplication factor (M -counter)
D 1 512 1 21 1 16384 Division factor of the input clock (D-counter)
Post-VCO div. 1 2 1 1 1 32 Post-VCO division factor (PV COd)
C 1 512 1 128 1 255 Division factor of the output clock (C-counter)
fpfdin [MHz] 5 325 19 500 1 200 Input frequency of the phase frequency detector (PFD)
fV CO [MHz] 600 1300 400 1000 500 1000 Operating range of the voltage-controlled oscillator (VCO)
fout [MHz] 0 460 3.125 400 20 1000 Output frequency for internal global or regional clock

By definition, the period relationship between the reference
(clkref ) clock and the jittery clock (clkjit) is inversely propor-
tional to the frequency relationship. Therefore, from Eq. (2)
and from the PLL definition, it follows that

S = fjit ·KD = fref ·KM . (3)

From Equations (1) and (3) it follows that to simultaneously
increase sensitivity to the jitter, and thus the entropy rate, and
the bit rate at the output, it is necessary to

• increase the reference frequency,
• decrease the division factor,
• increase the multiplication factor.
Unfortunately, these changes increase the internal frequen-

cies of the PLL to the point where they might go beyond the
limit of the PLL component itself. Hence, we must take into
account the physical parameters of the PLL when designing
the given TRNG.

As explained in [2], if the PLL-TRNG parameters are
outside of intervals feasible in the given technology (i.e. given
ranges of PLL parameters), two PLLs can be used. However,
to reduce the total cost of the generator, our objective was to
find PLL-TRNG configurations using just one PLL.

A. Setup of the PLL internal structure

Figure 2 depicts simplified general structure of PLLs avail-
able in selected FPGA families. Indeed, the PLL structure is
very similar in the three FPGA device families. Concerning
the architecture (but not parameters of its individual blocks),
the main difference is in the presence and configuration of
the post-VCO divider (VCO means the voltage controlled
oscillator): while this divider is not available in the Spartan-
6 family, the PLLs in the Cyclone V family can divide the
VCO output frequency by one or two, and those in the
SmartFusion R©2 devices can divide it by 1, 2, 4, 8 16, or
32. The number of outputs of the PLL block (i + 1) is also
different in these devices, i.e. 4, 6, and 10 in SmartFusion R©2,
Spartan-6, and Cyclone V FPGA, respectively.

The physical parameters of every internal component de-
picted in Fig. 2 have to be taken into account in the PLL-
TRNG design. Table I contains the list of the parameters and
their limit values documented by Altera [6], Xilinx [7], and
Microsemi [8].
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Fig. 2. Simplified general structure of the PLL block available in Altera
Cyclone V, Xilinx Spartan-6, and Microsemi SmartFusion R©2 FPGAs (D
– input frequency division factor; M – multiplication factor; C – output
frequency division factor; PFD – phase frequency detector; CP – charge pump,
LF- loop filter; VCO – voltage-controlled oscillator)

The internal frequencies of the PLL are directly dependent
on the chosen counter values (M , D, and Ci, respectively) as
well as on the input frequency of the PLL. Equations (4), (5),
and (6) show the relationship between the internal frequencies
and other PLL parameters:

fpfdin =
fin
D

, (4)

fV CO =
fin ·M · PV COd

D
, (5)

fout =
fin ·M
D · C

. (6)

We can conclude that the design of the PLL-TRNG depends
on many parameters, which are closely related. The output bit
rate of the generator (specified by Eq. (1)) and the sensitivity
to the jitter (given by Eq. (3)) depend on the application
needs, and the parameters described by Eq. (4) to (6) depend
on selected technology and given PLL specification. Our
experience shows that finding optimal PLL-TRNG parameters
is not a straightforward task and some efficient strategy is
therefore needed. We propose to use a genetic algorithm to
solve this task.

III. GENETIC ALGORITHM BASED RNG OPTIMIZATION

Genetic algorithms (GAs) belong to the group of evolution-
ary algorithms (EAs), which are widely used to solve searching
or optimization problems. GA operates over a population of
individuals. Each individual represents a solution to a problem
expressed as a vector of values.

The GA starts by selecting, usually randomly, an initial
set of individuals called a generation. Then it computes a
fitness function which represents a “desirability” of a particular
individual. The algorithm then chooses the best individuals and
by the means of recombination and mutation, it generates a



TABLE II
PARAMETERS OF THE IMPLEMENTED PLL BASED TRNGS

Config. fosc M D PV COd C fpfdin fV CO fout KM KD R S S−1

# [MHz] [MHz] [MHz] [MHz] [Mbits/s] [ps] [ps−1]
Altera Cyclone V

1 330 34 33 2 1 10.00 680 340 34 33 10.00 0.011 89.13
2 350 131 37 1 3 9.46 1239 413 131 111 3.15 0.045 21.81
3 338 198 64 1 2 5.28 1046 522 198 128 2.64 0.067 14.94

Xilinx Spartan-6
1 430 47 21 1 5 20.476 962 192 47 105 4.095 0.020 49.48
2 400 52 21 1 15 19.047 990 66 52 315 1.269 0.021 48.08
3 430 48 12 1 27 20.476 982 36 48 567 0.758 0.021 48.45

Microsemi SmartFusion2
1 59 149 29 2 1 2.034 606 303 149 29 2.034 0.008 113.75
2 200 216 127 2 1 1.574 680 340 216 127 1.574 0.043 23.15
3 200 291 199 2 1 1.005 584 292 291 199 1.005 0.058 17.18

new generation. This process repeats until a locally optimal
solution (depending on the selected initial set of individuals)
is found. Further explanation of different genetic operations
and algorithms is provided in [9].

In our experiments, we used an open-source GA optimiza-
tion utility provided by [10]. This utility is suitable for the GA
optimization with up to 5 design variables and 5 constraints,
which was sufficient in our case.

The design variables represent the parameters, which should
be found (by the GA). In case of the PLL-TRNG, it is the

• input frequency (fin),
• multiplication factor (M ),
• division factor (D),
• post-VCO divider (PV COd),
• output clock divider (C).

The design parameters, which are not controlled directly,
but which depend on design variables and need to have values
within certain limits are called the constraints. In our case, the
constraints were as follows:

• phase detector input frequency,
• VCO frequency,
• output frequency.

An important part of the GA optimization is the fitness func-
tion, because it determines which of the generated individuals
are the best to propagate to next generations. In our case,
the fitness function is a TRNG parameter, which we want to
optimize for. And since security is the most critical property
of a TRNG, we decided to optimize for the highest possible
entropy rate, thus maximize the sensitivity to the jitter (S).

IV. IMPLEMENTATION RESULTS

In our implementations, we used the PLL-TRNG architec-
ture depicted in Figure 3.
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Fig. 3. Block diagram of the PLL based TRNG implemented in FPGAs

We used a ring oscillator as a reference clock source for
the PLL-TRNG in order to have a configurable source of the
input clock frequency.

First, we created three different GA optimization models
based on Table I, one for each FPGA family. Next, we
used the GA to find optimal PLL-TRNG parameters and we
verified that the found parameters are indeed implementable
in the corresponding family. Finally, we selected three best
candidates for each of three families.

Table II presents the parameters of our optimized implemen-
tations of the PLL-TRNG ordered by the achieved bit rate.
Although all the generated solutions were implementable in
given families, we selected the best candidate in each family,
knowing that according to our experience, to obtain high
entropy rate, the sensitivity to the jitter (S) should be at least
0.04.

We selected Configuration 2 for the Altera Cyclone V
family, because it had sufficient jitter sensitivity, much bigger
than Configuration 1. We eliminated Configuration 3 in this
family, because the division factor (KD) had an even value.

We selected Configuration 1 for the Xilinx Spartan-6 FPGA,
because it had the highest bit rate, while the sensitivity to the
jitter was very close to that of Configuration 2 and 3 (although
smaller than required, i.e. smaller than 0.04).

Finally, we chose Configuration 2 for SmartFusion R©2,
because it was faster than Configuration 3 (while having suffi-
cient sensitivity) and we eliminated Configuration 1 (although
it was faster), because its sensitivity was not sufficient.

V. DISCUSSION

The use of the GA is very useful in optimization of
parameters of the PLL-TRNG. This is true for two reasons:

• In order to manage the obtained result, the multiplication
and division factors KM , KD of the PLL-TRNG (and
thus multiplication and division factors D, M , C of the
PLL) must be setup very precisely.

• Because of the fact that the technical documentation of
PLL blocks, which is publicly available, is not sufficiently
detailed and the user is forced to use the PLL intellectual



property (IP) function generators, which indicate only
success or failure of the PLL setup procedure and often
not the direct reason of the failure.

As an example, we can mention the Microsemi FAB CCC
Configurator (the Microsemi PLL IP function generator), in
which the user has to enter the input and output frequencies
of the PLL with the precision from two to three decimal
places, in order to get required multiplication and division
coefficients. This is clearly not possible using the ‘failure
and success’ strategy. On the contrary, the application of
the genetic algorithm together with the associated Excel file
specified the needed coefficients and input/output frequencies
and simplified largely our task.

Table II specifies sensitivities to the jitter of different PLL-
TRNG configurations, but the final entropy rate depends also
on the clock jitter, which can vary from family to family.
Therefore, we verified the quality of the generated raw random
numbers using Procedure B of the AIS 31 [11] (tests T6 to
T8) and we estimated the entropy rate at the generator output
using the results of test T8, as it was made in [5].

Table III compares results of our implementations with
those presented in [5], which used the same sources of
randomness and the same FPGA families.

TABLE III
COMPARISON OF THE RESULTS OBTAINED WITH AND WITHOUT THE GA

OPTIMIZATION

Version PLLs used Bit rate AIS 31 Entropy
[Mbits/s] (T6 - T8) estimation

Altera Cyclone V
This work 1 2.604 PASS 0.999

[5] 2 0.6 FAIL 0.986
Xilinx Spartan-6

This work 1 3.975 FAIL 0.990
[5] 2 0.44 FAIL 0.981

Microsemi SmartFusion R©2
This work 1 1.2 PASS 0.999

[5] 2 0.37 FAIL 0.921

We can observe that the output bit streams of generators
implemented in the Cyclone V and SmartFusion2 families
passed the AIS 31 tests without any problems. It was not the
case of the Spartan-6 family, because of the limitations of the
PLL block. The small range of the PLL division factor made it
extremely difficult to implement a TRNG using only one PLL.
Since the TRNG bit rate is high enough, a possible solution
would be to use an XOR based post processing. This would
reduce the bit rate in favor of increasing the entropy.

The entropy estimation gave us a better knowledge about the
proximity to the required statistical quality. Indeed, according
to AIS 31, the Shannon entropy rate at the generator output
should be higher than 0.997. We can see that even in the case
of the Spartan-6 family, our solution is much closer to the
required case than that published in [5].

However, differences in bit rates are even more remarkable:
comparing to [5] we increased the bit rate 3, 4, and 8 times
in SmartFusion R©2, Cyclone V, and Spartan-6, respectively.
Last but not least, using the GA optimization, we were able

to obtain satisfying results using only one PLL. A suitable
solution with only one PLL was extremely hard to find
manually.

VI. CONCLUSION

In this paper, we proposed a method of optimization of the
PLL-TRNG design using a genetic algorithm. The optimized
configurations reached considerably higher bit rate and their
area was reduced by two by using only one PLL.

Besides increasing the bit rate and reducing the cost, the
genetic algorithm was useful in increasing the entropy rate
in all selected families. In two of them, Altera Cyclone V
and Microsemi SmartFusion R©2, the entropy rate was increased
to the value, which is required by the AIS-31 standard and
in the third one, Xilinx Spartan-6, the estimated entropy rate
was much closer to the required value and therefore easy to
increase by some low cost post-processing method.

In the near future, we plan to extend the number of input
parameters and of design constrains, to manage the design of
a generator using two PLLs. This could be particularly useful
in the case, when a low jitter clock source must be used.
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