Personalized Parsimonious Language Models for User Modeling in Social Bookmaking Systems

Abstract : This paper focuses on building accurate profiles of users, based on bookmarking systems. To achieve this goal, we define personalized parsimonious language models that employ three main resources: the tags, the documents tagged by the user and word embeddings that handle general knowledge. Experiments completed on Delicious data show that our proposal outperforms state-of-the-art approaches and non-personalized parsimonious models.
Type de document :
Communication dans un congrès
European Conference on Information Retrieval, Apr 2017, Aberdeen, United Kingdom
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal-ujm.archives-ouvertes.fr/ujm-01615362
Contributeur : Mathias Géry <>
Soumis le : jeudi 12 octobre 2017 - 12:08:13
Dernière modification le : jeudi 11 janvier 2018 - 06:22:06

Fichier

2017_10_12_personalized-parsim...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : ujm-01615362, version 1

Collections

Citation

Nawal Ould Amer, Philippe Mulhem, Mathias Géry. Personalized Parsimonious Language Models for User Modeling in Social Bookmaking Systems. European Conference on Information Retrieval, Apr 2017, Aberdeen, United Kingdom. 〈ujm-01615362〉

Partager

Métriques

Consultations de la notice

71

Téléchargements de fichiers

15