Personalized Parsimonious Language Models for User Modeling in Social Bookmaking Systems

Nawal Ould Amer 1, 2 Philippe Mulhem 2 Mathias Géry 3
2 MRIM - Modélisation et Recherche d’Information Multimédia [Grenoble]
Inria - Institut National de Recherche en Informatique et en Automatique, LIG - Laboratoire d'Informatique de Grenoble
Abstract : This paper focuses on building accurate profiles of users, based on bookmarking systems. To achieve this goal, we define personalized parsimonious language models that employ three main resources: the tags, the documents tagged by the user and word embeddings that handle general knowledge. Experiments completed on Delicious data show that our proposal outperforms state-of-the-art approaches and non-personalized parsimonious models.
Document type :
Conference papers
Complete list of metadatas

Cited literature [13 references]  Display  Hide  Download

https://hal-ujm.archives-ouvertes.fr/ujm-01615362
Contributor : Mathias Géry <>
Submitted on : Thursday, October 12, 2017 - 12:08:13 PM
Last modification on : Tuesday, February 12, 2019 - 1:31:00 AM

File

2017_10_12_personalized-parsim...
Files produced by the author(s)

Identifiers

  • HAL Id : ujm-01615362, version 1

Citation

Nawal Ould Amer, Philippe Mulhem, Mathias Géry. Personalized Parsimonious Language Models for User Modeling in Social Bookmaking Systems. European Conference on Information Retrieval, Apr 2017, Aberdeen, United Kingdom. ⟨ujm-01615362⟩

Share

Metrics

Record views

303

Files downloads

130