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ABSTRACT
The search for exoplanet is a very active topic in astronomy.
Exoplanet detection by direct imaging requires both dedicated
instruments to mask out the host star and careful image pro-
cessing methods. Data processing is challenging because the
exoplanet signal is very faint and hidden in a much stronger
non-stationary background displaying strong spatial correla-
tions. In contrast to previous detection methods, we explic-
itly model the spatial correlations of the background and de-
sign a completely unsupervised method that accounts for the
background non-stationarity. From a time series of observa-
tions, we learn a local model of the distribution of background
patches. Significant sources are then detected with a general-
ized likelihood ratio test. The sub-pixel location and flux of
each detected exoplanet are estimated jointly to a refining of
the background model. Each detected source is removed from
the data, following an orthogonal matching pursuit strategy.
The stopping criterion is based on a control of false alarms.

We compare the proposed algorithm to three state-of-the-
art exoplanet detection methods on datasets obtained with
SPHERE instrument operating at the Very Large Telescope
(VLT) in Chile. We show a drastic improvement of the sensi-
bility and much fewer false detections.

Index Terms— Detection, estimation, shrinkage estima-
tor, patch, covariance

1. INTRODUCTION

Evidence of the presence of exoplanets can either be indirect
or direct. Examples of indirect detection techniques [1] in-
clude the analysis of the radial velocity of the host star [2], by
Doppler effect, the planet’s gravity resulting in the host star
moving in a small orbit, or the transit photometry [3] which
identifies the small drops of the star brightness when an exo-
planets transits between the observer and the star. Direct ob-
servation of exoplanets [4, 5] is very challenging because of
the small angular separation (a few arcseconds) and the huge
brightness difference (typically in the range 105 to 107 in the
near infrared) between the star and the exoplanets.

Exoplanet detection by direct imaging is made possible by
coupling high angular resolution (large telescopes with adap-
tive optics to compensate for atmospheric turbulence), par-
tially masking of the star by a coronagraph [6], and differen-
tial imaging [7]. Differential imaging is based on the combi-
nation of several images in which the residual signal from the
star and the signal of the exoplanets undergo different trans-
forms. In angular differential imaging (ADI), the speckles
observed when masking out the star are quasi-static while all
off-axis sources (such as exoplanets) have an apparent rota-
tion motion from one image to the other. Differential imaging
and the detection technique form a crucial step that define the
overall performance of the instrument.

Most of state-of-the-art methods for exoplanet detection
in ADI perform first a subtraction step with the aim to sup-
press at best the speckles due to the star and hence improve the
signal-to-noise ratio of the exoplanets. To process the image
r` at time frame t`, TLOCI algorithm and its variants [8, 9] es-
timate the linear combination of images rm recorded at times
tm 6= t` that reduces as much as possible the energy of the
residuals r`−

∑
m 6=` βm · rm, with βm the weights of the lin-

ear combination. This subtraction can be improved by ad-
justing the weights βm over angular sectors [10]. An issue is
the signal self-subtraction: because of the apparent motion of
the field of view, the signal from the exoplanets is not located
at the exact same position at other time frames tm. How-
ever, that motion is small, especially at short angular separa-
tions, and part of the signal of interest is lost by this subtrac-
tion step. KLIP algorithm [11] improves the subtraction by
computing the most significant modes with a principal com-
ponents analysis (PCA). The observed images {r`}`=1:T are
then projected onto the subspace orthogonal to these modes,
where the signal of the exoplanets remains mostly unchanged
and the strong background due to the star is largely reduced.
To improve the background subtraction, more modes must
be included, at the cost of signal self-substraction. LLSG
[12, 13] solves the signal self-substraction problem by de-
composing the temporal stack of observations {r`}`=1:T into
a low-rank component (that mostly contains the background),



a sparse component (that contains exoplanet signal) and a
Gaussian noise component (that accounts for measurement
noise). Unfortunately, it is difficult to control the false alarm
rate when performing the detection on the sparse component
due to the non-linear decomposition method used. The AN-
DROMEDA algorithm [14] applies a statistical detection ap-
proach to pre-filtered images where the background is approx-
imately whitened by computing both time differences and a
band-pass spatial filtering.

Existing methods require a trained user to hand-tune sev-
eral parameters. They compensate for the lack of stationar-
ity in the detection maps by some ad-hoc normalization steps
and correct the loss of signal due to signal self-subtraction by
a calibration step where fake planets are first injected in the
data, then detected to locally estimate the bias.

Our contributions: We propose a new and entirely unsuper-
vised method named PACO (for PAtch COvariance) which is
statistically grounded and photometrically unbiased for the
detection of exoplanets in direct imaging. Rather than sub-
tracting a global model of the background, we locally learn a
statistical model of background fluctuations, at the scale of a
patch, and capture the spatial correlations of the background.
Our detection is based on a generalized likelihood ratio test.
We show on real data that false alarms are controlled, so that
a single threshold can be set to decide for statistically relevant
detections. The same statistical model of the background can
be used to estimate the flux (i.e. the photometry) of the de-
tected exoplanets.

Our method is described in section 2. We show in sec-
tion 3 that the detection performance is significantly improved
compared to state-of-the-art methods.

2. EXOPLANET DETECTION BY MODELING
BACKGROUND PATCHES COVARIANCE

Fig. 1 illustrates an ADI dataset: T images in which the
dominant component corresponds to speckles due to the star
masked by the coronagraph. In these images, exoplanets are
too faint to be visible. We propose to learn a local model
of the background from the collection of patches extracted
at each location of the field of view. Patch-based models
have been widely used in image processing, Gaussian models
have in particular led to very efficient denoising techniques
[15, 16].

Statistical model of the background: Due to the motion of the
field of view from one time to another, an exoplanet initially
located at angular position φ0 on a reference frame is located
at φt = Ft(φ0) at time t, see Fig. 1. Exoplanets are very faint
and very few so that it is unlikely that the signal from two
exoplanets overlap. We model the recorded intensity rθk,t` at
the 2-D pixel location θk and time t` by the superimposition
an unresolved exoplanet and the background component:

rθk,t` = αhθk(φt`) + fθk,t` , (1)

Fig. 1. An ADI dataset consists of T N–pixels images in
which the dominant signal (the central red region) corre-
sponds to speckles due to the star, and the signal of interest is
due to the faint sources that undergo a (known) rotation from
one time to another. Our method locally models the back-
ground by analyzing the collection of patches centered at a
given location of the field of view.

with α ≥ 0 the flux of the exoplanet, hθk(φt`) = h(θk −φt`)
the off-axis PSF, centered on the location φt` of the exoplanet
at time t` and sampled at pixel location θk, and fθk,t` the
background at spatio-temporal index (k, `). Under a statisti-
cal model of the background specifying the probability den-
sity function pf , the maximum likelihood estimator of the
flux α of a potential source located at position φ0 in the refer-
ence frame is:

α̂ = argmax
α

pf ({rθk,t` − αhθk (Ft`(φ0))}k=1:N, `=1:T ) , (2)

and the detection can be expressed by the binary hypothesis
test:
H0 : {rθk,t`}`=1:T, k=1:N = {fθk,t`}`=1:T, k=1:N

H1 : {rθk,t`}`=1:T, k=1:N = α {hθk (φt`)}`=1:T, k=1:N

+{fθk,t`}`=1:T, k=1:N .

(3)

Under hypothesis H0, no exoplanet is present at location φ0
(α = 0 in eq. (1)). The detection can be performed via the
generalized likelihood ratio test:

log
pf ({rθk,t` − α̂ hθk(φt`)}k=1:N, `=1:T )

pf ({rθk,t`}k=1:N, `=1:T )

H1

≷
H0

η . (4)

In contrast to other exoplanet detection methods, we do not
consider background speckles as a deterministic component



but as a random fluctuation. Given the non-stationarity of the
background in the field of view, we build a local model, based
on patches. In the following, bold face letters indexed by a lo-
cation indicate K-pixels disk-shaped 2D patches extracted at
that spatial location. We model the distribution of the collec-
tion of background patches {fθk,t`}`=1:T extracted at some
location θk (red patches in Fig. 1) by a multivariate Gaussian
N (mθk ,Cθk) with a full covariance (hence the name of our
method: PACO, for PAtch COvariance).

We estimate the mean mθk using the sample mean. Due
to the limited number T of temporal frames, estimation of
Cθk with the sample covariance estimator leads to rank defi-
cient matrices. It is thus necessary to regularize the estima-
tion. We use the shrinkage estimator for covariance matrices
proposed by [17] and defined by: Ĉ = (1 − ρ̂) Ŝ + ρ̂ F̂,
where Ŝ is the sample covariance matrix (unbiased but suf-
fering from a large variance) and F̂ is the diagonal matrix
formed from the sample variances (biased but with a limited
variance). Parameter ρ̂ balances each estimator to reach a
bias-variance tradeoff. By extending the results of [17] to the
specific form of F̂, we get the data-driven expression:

ρ̂
(
Ŝθk
)
=

tr
(
Ŝ2
θk

)
+ tr2

(
Ŝθk
)
− 2

∑K
i=1

[
Ŝθk
]2
ii

(T + 1)
(
tr
(
Ŝ2
θk

)
−
∑K
i=1

[
Ŝθk
]2
ii

) . (5)

Estimation of the exoplanet flux: With our multivariate Gaus-
sian model of the background, the maximum likelihood esti-
mator (2) of the exoplanet flux is α̂ = b/a, witha =

∑T
`=1 hbφt`

e(φt` )
t · Ĉ−1

bφt`
e ·hbφt`

e(φt` )

b =
∑T
`=1 hbφt`

e(φt` )
t · Ĉ−1

bφt`
e ·
(
rbφt`

e,t` − m̂bφt`
e
)
,

(6)

where hbφt`
e(φt`) stands for the off-axis PSF for a source at

sub-pixelic location φt` sampled over a patch whose center is
bφt`e, the nearest pixel to φt` . The standard-deviation of α̂ is
σ̂α = 1/

√
a. Given that the flux of an exoplanet is necessarily

positive, we define α̂+ = max(α̂, 0).

Detection of an exoplanet: The generalized likelihood ratio
test defined in (4), under positivity constraint, is given by:

(GLRT+)
max(b, 0)2

a

H1

≷
H0

η . (7)

When η ≥ 0, this test is equivalent to the test α̂/σ̂α ≷ τ with
τ =

√
η. This latter test corresponds to a linear transform

of the data and can be interpreted as the signal-to-noise ratio
(SNR) of the estimation of the (unconstrained) flux α of the
source. It is straightforward to show that, under our Gaus-
sian model, it follows a standard normal distribution. Under
hypothesisH0, the threshold value τ can thus easily be trans-
lated into a false alarms probability.

Once an exoplanet has been detected (the test being larger
than the threshold τ at some location φ0), the flux α can be
improved by jointly estimating α and the background statis-
tics (mean and covariances of the Gaussian models at each

Fig. 2. Synopsis of PACO algorithm.

location {φt`}`=1:T at which the planet is seen at the corre-
sponding times t1 to tT ).

PACO, our exoplanet detection algorithm: Figure 2 summa-
rizes our exoplanet detection algorithm. In step , the local
patch mean and patch covariances are computed. Then, a de-
tection map is obtained by computing the SNR α̂/σ̂α at each
possible locations φ0 within the field of view. Step checks
whether the largest value in the detection map is above the
detection threshold. If not, the algorithm stops, otherwise, an
exoplanet is detected at the location of the maximum of the
detection map. Step then refines the location to sub-pixelic
accuracy and improves the estimation of the flux α of the de-
tected exoplanet by jointly estimating α and the background
means and covariances. This joint estimation procedure1 pre-
vents from any signal self-subtraction (removal of part of the
exoplanet signal in the background mean). Once this local op-
timization step is finished (the convergence criterion is based
on the computed Cramér-Rao lower bounds on localization
and flux accuracies), step removes the signal of the de-
tected exoplanet from the data. Step is then repeated on
the residual signal, and the subsequent steps, until the condi-
tion in step indicates that no more statistically significant
detections can be made.

The method is unsupervised: no parameter tuning is nec-
essary, the patch size is set based on a Monte Carlo study and
is constant for a given instrument2; the threshold τ is set ac-
cording to a prescribed false alarms rate3.

1if two overlapping sources are detected, their flux is jointly estimated
like in a conventional orthogonal matching pursuit procedure

2it is related to the diffraction limit of the telescope, and we found that a
disk-shaped patch with 49 pixels was optimal for SPHERE-IRDIS instrument

3it is common practice to set τ = 5 for exoplanet detection, leading to a
probability of false alarm below 2.9× 10−7



Fig. 3. Detection maps obtained with PACO, TLOCI, KLIP and LLSG algorithms. The first 32 detections are marked on each
map by square patterns.

3. PERFORMANCE OF THE PROPOSED METHOD

Detection maps obtained with PACO algorithm are compared
to the maps produced by TLOCI [9], KLIP [11] and LLSG
[12] algorithms presented in the introduction. TLOCI and
KLIP maps are obtained with the VLT/SPHERE reduction
pipeline (SpeCal) [18] and thresholded, as done routinely for
data analysis. We used data obtained by the InfraRed Dual
Imaging Spectrograph (IRDIS) of the Spectro-Polarimetry
High-contrast Exoplanet REsearch (SPHERE) instrument
operating on the Very Large Telescope (VLT), in Chile. We
processed a temporal stack of 96 frames acquired on the star
HIP72192. There are two known faint point sources in the
field of view4. We added 30 synthetic exoplanet signals,
with faint brightness (mean flux α between 2.5 × 10−6 and
3.9 × 10−5 that of the host star, depending on the angular
separation), in order to compare the capability of the different
algorithms to recover them.

Figure 3 shows the detection maps computed with each
method. Figure 4 gives the corresponding receiver operating
characteristic (ROC) curves representing the true positive rate
(TPR) as a function of the full-frame false detection number.
Both figures illustrate the superior detection performance of
PACO for faint sources (all sources are detected) and the im-
proved behavior with respect to false alarms (no false alarm
larger than 4 within the field of view). State-of-the-art algo-
rithms are very sensitive to false alarms, particularly near the
host star which drastically limit their detection ability in this
area where the detection is the most difficult due to the small
apparent rotation of the field of view. Our forthcoming paper
[19] gives several additional results and shows that contrary
to existing algorithms [20, 21], the probability of false alarm
is reliably controlled when thresholding the SNR maps.

4the question of whether these sources are actual exoplanets or brown
dwarfs behaving as exoplanets is still open

3.9

Fig. 4. ROC curves for each exoplanet detection method.

4. CONCLUSION

We proposed a new method (PACO) for exoplanet detec-
tion by direct imaging. Our method differs from existing
approaches by its local modeling of the background fluc-
tuations. We take advantage of the different backgrounds
available in the temporal stack to learn a local multi-variate
Gaussian. This model captures the background spatial cor-
relations at a local scale of small patches. This improves
the robustness to fluctuations of the background due to the
stellar leakages or the evolution of the quality of the adaptive
optics correction. We proposed a method to iteratively extract
exoplanets until no detection is statistically relevant given the
chosen false alarm rate. Results on real observations from
VLT/SPHERE-IRDIS instrument show a clear advantage of
our algorithm compared to existing methods based on image
subtraction or image decomposition approaches, in particular
at small angular separations, a case that is very important in
the quest for exo-Earth.
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A fully loaded speckle killing machine,” Proceedings of
the International Astronomical Union, vol. 8, no. S299,
pp. 48–49, 2013.

[9] C. Marois, C. Correia, R. Galicher, P. Ingraham, et al.,
“Gpi psf subtraction with tloci: the next evolution in
exoplanet/disk high-contrast imaging,” arXiv preprint
arXiv:1407.2555, 2014.

[10] Z. Wahhaj, L.A. Cieza, D. Mawet, B. Yang, et al., “Im-
proving signal-to-noise in the direct imaging of exoplan-
ets and circumstellar disks with mloci,” Astronomy &
Astrophysics, vol. 581, pp. A24, 2015.

[11] R. Soummer, L. Pueyo, and J. Larkin, “Detection and
characterization of exoplanets and disks using projec-
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