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Optical scatterometry by use of a neural network is now recognized as an efficient m ethod f or r etrieving di-
mensions of gratings in semiconductors or glasses. For an on-line control, a small number of measurements 
and a rapid data treatment are needed. We demonstrate that these requirements can be met by combining 
data preprocessing and a proper neural learning method. A good accuracy is attainable with the measure-
ment of only a few orders, even in the presence of experimental errors, with a reduction in learning and com-
puting time. 

1. INTRODUCTION

The increasing integration density in integrated elec-

tronic circuits gives rise to new manufacturing capabili-

ties that can be used in the optical domain for the realiza-

tion of periodic structures of increased spatial frequency.

Smaller grating periods lead to fewer diffracted orders

and also to less-complex interferograms between overlap-

ping orders. New application possibilities are currently

offered by submicrometer diffraction gratings in rapidly

growing fields such as optical communications and sen-

sors.

A reliable manufacturing process for diffraction grat-

ings can be controlled and possibly improved only if the

critical dimensions can be accurately measured. The de-

terministic control of the process is ensured by the deter-

mination of the grating parameters that characterize the

profile of the grooves. Two classical measurement meth-

ods are commonly used: scanning electron microscopy

and atomic force microscopy. The first one is considered

the main reference method in terms of accuracy. How-

ever, it requires some preparation for metal deposition in

the case of dielectric gratings and etching. Furthermore,

it is a destructive method usable only as an a posteriori

sampling process control. The second one has an ex-

treme sensitivity, but the dimension of the tips limits its

spatial resolution and reproducibility. However, both

methods perform a local measurement over a few periods

only, require complex and costly equipment, and are very

time-consuming. They are not adequate for the on-line

control of the different steps of a manufacturing process.

Thus another type of characterization method is

needed. The most adequate is based on measuring the

scattered and/or the diffracted light of a grating under

known illumination conditions and then on finding the

profile of the structure from the measurement of dif-

fracted intensities. The last operation is known as the

inverse-problem resolution. These two stages must be

optimized for the low response time needed for a realistic

industrial measurement method: The number of dif-

fracted intensities to be measured must be sufficiently

low and the treatment of the experimental data instanta-

neous. If these conditions are satisfied, it is a quick, non-

contact, and nonlocal method. Furthermore, it requires

low-cost optical equipment, and the measurement is easy

to perform.

The theoretical problem of calculating the diffracted in-

tensities in the case of wavelength-scale grating periods

can be solved by a number of numerical techniques. For

solving the inverse problem, theoretical and statistical

methods have been tested. Theoretical methods devel-

oped so far1 work only for some specific cases in particular

conditions. Another method consists of retrieving the

profile parameters by data analysis based on different

statistical models, for instance, classical linear regression

models, such as the principal components analysis (PCA)

method,2 the discriminant analysis method,3 and the

partial-least-square method.4–6 In the past few years an-

other statistical tool has received increased attention:

the neural network. A neural network analysis can be

regarded as a regression method based on a non-linear

model. In the optical diffracted domain, a neural net-

work has been used to develop an inspection method for a

grating structure.7 Thus several methods for solving the

inverse problem include a neural network.8 Some early

results obtained by means of a neural analysis were not

as accurate as those obtained from classical linear regres-

sion, such as the partial least square method4 in particu-

lar. The accuracy of the results reported in more recent

studies9,10 is increasing, however, as a result of better

comprehension of neural network function. Recently it
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was shown in particular that neural networks resist noise

more efficiently than does the partial least square

method.11 Nevertheless, all neural networks reported so

far require a large number of inputs and neurons. This

results in a highly complex network architecture and,

above all, too long a training time.

In this paper we demonstrate that an equivalent accu-

racy is now attainable with neural networks of a lower

level of complexity. It describes in detail every step of a

neural network approach. The emphasis will be placed

on a reduction of computer time by means of a reduction

in complexity of the network and on a smaller number of

input data so as to allow for a real-time measurement.

Section 2 describes the type of gratings considered and

illustrates the complexity of the dependence of the diffrac-

tion characteristics on the profile parameters. The diffi-

culty of choosing the best experimental condition is pre-

sented. The selected neural network structure is

described in Section 3 with some general discussion about

neural networks. The method for obtaining training

samples is explained. Section 4 is concerned with the op-

timization of the learning step. The efficiency of PCA for

reducing learning time is shown. In Section 5 the effect

of experimental errors is considered. The increase of

measurement errors indicates a poor generalization ca-

pacity. A solution is found in the use of noisy data in the

learning procedure. An example of results obtained with

different experimental conditions illustrates the efficiency

of the method. The conclusion emphasizes the advan-

tages and weaknesses of the method and identifies where

future work should be directed.

2. INVERSE-SCATTERING PROBLEM

The type of grating profile considered in this work is a

wavelength-scale period structure assumed to have a

symmetric trapezoidal shape. This profile was chosen as

a simulation of those usually obtained by photolithogra-

phy transfer and subsequent reactive ion beam etching on

a quartz substrate. The grating period is constant and

assumed to be known. The characterization of this

groove shape is thus made by the determination of three

grating parameters: the sidewall projection b1 , the line-

width b2 , and the groove depth h (Fig. 1). All computer

simulations are made with a fixed nominal grating period

L 5 1 mm. If not specified, the wavelength of the inci-

dent light is that of a laser diode at l 5 670 nm. Here-

after the use of efficiencies will be preferred to intensities.

They are defined as normalized intensities or equiva-

lently as a percentage of the total incident intensity. The

substrate being transparent, diffracted orders may be re-

flected and transmitted. The reflected and transmitted

efficiencies in the direction of the mth order will be de-

noted rm and tm .

Several rigorous numerical methods allow the calcula-

tion of the diffraction efficiencies in the different orders

for a set of experimental conditions. They are defined by

the angle u, the wavelength l, and the TE or TM polar-

ization of the incident light in a grating structure charac-

terized by the refractive index of each medium and the

groove parameters. A rigorous coupled-wave analysis

was used here: the multi-layer modal method by Fourier

expansion,12 which gives accurate results whatever the

polarization and grating period.

For gaining a more intuitive representation of the de-

pendence of diffracted efficiencies on the grating-

parameter variation, some preliminary calculations are

performed. The diffraction efficiencies are computed ver-

sus the same groove-depth variation in a number of dif-

ferent structures under different incidence conditions.

The efficiencies are calculated on the one hand for the

same trapezoidal grating (b1 5 0.105 mm, b2

5 0.32 mm, and h 5 0.32 mm) for two different angles of

incidence (u 5 30° in Fig. 2 and u 5 20° in Fig. 3); on the

other hand, for the same incidence angle u 5 30° for two

different gratings (b1 5 0.105 mm, b2 5 0.32 mm in Fig. 2

and b1 5 0.00 mm, b2 5 0.50 mm in Fig. 4). The plot of

the relative variation of efficiencies is preferred to reveal

the sensitivity to the parameters. Figures 2–4 reveal

that diffraction-order efficiencies are not equally sensitive

to groove-depth variations. Some diffracted efficiencies

are more sensitive (for example, t22) than others (for ex-

ample, r0) in Figs. 2 and 4. It can be noticed that the

quantitative variations greatly change with parameters’

values or incidence conditions; for example, in Fig. 3, the

reflected order r0 is clearly more sensitive than the trans-

mitted diffraction order t22 . In addition, some attention

must be paid to the absolute values of efficiencies that

cannot be usable because of their weakness. For ex-

ample, as shown in Fig. 5, the optimal diffracted-order ef-

ficiency t22 cannot be easily measured with sufficient ac-

curacy when the grating is illuminated under a 30°

incidence angle.
Fig. 1. Symmetric grating profile, defined by sidewall projection

b1 , linewidth b2 , groove depth h, and period L.

Fig. 2. Relative variations of diffracted efficiencies versus the

groove depth. The grating parameters are b1 5 0.105 mm, b2

5 0.32 mm, and h 5 0.32 mm. Incident light is TE polarized at

u 5 30°.
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The diffracted efficiencies depend on grating param-

eters (b1 , b2 , and h) but also on incidence conditions such

as angle u, polarization (TE or TM), and wavelength l.

Thus one must not make quick conclusions about the util-

ity of a particular order on the basis of a single curve un-

der specific conditions. However, in the case of a small

grating period, the number of diffracted orders is small.

Useful information will be obtained by the measurement

of all high-intensity orders for various incidence condi-

tions.

3. NEURAL NETWORKS

Neural networks can be used to solve problems that are

difficult for conventional computing methods. They are

based on biological neuron systems and have conse-

quently an interesting capacity for learning.13 In this

work, a neural network will be trained to learn the rela-

tionship between diffraction efficiencies and grating pa-

rameters. The former will be the inputs and the latter

the outputs of the network.

Neural networks used in this paper belong to the so-

called multiple-layer structure. Each neuron in a layer

is connected only to all those belonging to the previous

layer or to the next layer. The present network contains

three layers of neurons (Fig. 6): The first one is the input

layer, the second one the hidden layer, and the third one

the output layer. The organization of a simple neuron is

represented in Fig. 7. The synaptic weight w i, j is the

strength of the connection between the output of neuron j

(or input j) and the input of neuron i. The sum a i of

weighted inputs is the argument of the transfer function

f. The output o i of the neuron i is thus obtained by

f(a i).
13 A sigmoid transfer function was selected for neu-

Fig. 3. Relative variations of diffracted efficiencies r
22 , r

21 , r0 ,

t
22 , t

21 , and t0 of a grating with L 5 1 mm, b1 5 0.105 mm,

b2 5 0.32 mm, and h 5 0.32 mm when the groove depth is vary-

ing with TE polarized light at u 5 20°.

Fig. 4. Relative variations of diffracted efficiencies r
22 , r

21 , r0 ,

t
22 , t

21 , and t0 of a grating with L 5 1 mm, b1 5 0 mm, b2

5 0.5 mm, and h 5 0.32 mm when the groove depth is varying

with TE polarized light at u 5 30°.

Fig. 5. Absolute variations of diffracted efficiencies r
22 , r

21 ,

r0 , t
22 , t

21 , and t0 of a grating L 5 1 mm, b1 5 0.105 mm, b2

5 0.32 mm, and h 5 0.32 mm when the groove depth is varying

with TE polarized light at u 5 20°.

Fig. 6. Graph of a three-layer network with six inputs, three

outputs, and four neurons in the hidden layer. w i, j is the con-

nection weight between the jth neuron in the input layer and the

ith in the hidden layer.

Fig. 7. Structure of a formal neuron. x j represents one input of

the neuron, a i the weighting sum and o i the neuron output.
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rons in the hidden layer and a linear transfer function for

the output layer. It was demonstrated that this kind of

neural network, with these transfer functions, is able to

approximate any function with a finite number of

discontinuities.14,15 It will then be suitable for solving

the inverse problem.

The use of neural networks is divided into two steps:

the learning step and the exploitation step. The learning

step needs a representative set of data pairs that will be

called $input/target% couples. It consists of an adjust-

ment of the synaptic weights. The initialization of these

values is ensured by the Nguyen–Widrow algorithm.16

This adjustment is performed by an iterative procedure to

minimize the error between the target and the calculated

outputs of the network. The $input/target% couples from

the training data set are randomly provided to the net-

work, and outputs calculated with previous weights w are

compared with theoretical targets for each sample. Thus

the estimated error allows the adjustment of the connec-

tion values between neurons by a gradient descent. The

faster backpropagation Levenberg–Marquardt training

algorithm17 was used for this training process. Weights

are updated after each epoch, i.e., the presentation of all

training couples. This phase is named ‘‘batch supervised

training section.’’ This operation is repeated until a defi-

nite desired value of the calculated output error has been

reached and can be performed within a few minutes.

The second operation can be called the exploitation

step. Synaptic weights are now fixed. New unknown in-

puts are introduced into the network. Outputs are in-

stantaneously calculated, giving an estimation of the

grating parameters.

In a real characterization experiment the set of train-

ing samples will be provided by a representative selection

of experimental data. The main problem occurring in the

implementation of this method is that neural network

training often requires nearly 1000 samples. The gen-

eration of such a number of data is intractable, and above

all, the accurate reproducible nonlocal measurement of

the parameters is not realistic. Instead, the numerical

simulation of various diffraction gratings is easy, and dif-

fracted efficiencies can be accurately obtained for known

parameters. The simulation will give us a set of samples

called exact values. Furthermore, this method has no

limit in resolution. One assumption to be verified is the

symmetric trapezoidal waveform of the grating profile.

It must be remembered that neural network results are

valid only within the training domain. This assumes

that the grating-parameter variations are approximately

known.

4. IMPLEMENTATION OF THE METHOD

A. Theoretical Samples
Grating fabrication leads to deviations of the different

grating parameters relative to their targeted values.

The simulated structure is a transparent grating made by

dry etching in a quartz substrate (1.456 index at the used

wavelength). Its targeted geometrical parameters are

b1 5 0 mm, b2 5 0.5 mm, and h 5 0.3 mm. It is as-

sumed that the actual parameter values obtained after

the fabrication process are kept within the ranges 0

, b1 , 0.15 mm, 0.2 mm , b2 , 0.5 mm, and 0.25 mm

, h , 0.35 mm. There are 18 inputs to the neural net-

work (r0 , t0 , and t21 efficiencies in TE and TM polarized

light for three values of the incident angle: 20°, 25°, and

30°). A set of 1300 theoretical $efficiencies/grating pa-

rameters% couples that belong to the parameter-variation

domain are calculated. The calculation time is quite long

(several hours), but it has to be performed only once.

B. Data Preprocessing and Postprocessing
Before neural treatment, all inputs and targets are nor-

malized so that they have zero mean and unity standard

deviation. Thus all variables will have the same influ-

ence during the neural training, whatever their size. A

large number of inputs requires a larger neural network

with a consequent increase in training-time requirements

and the need for a greater number of training samples.

The number of input vectors is still large (18), but they

are probably correlated. A PCA was performed before

the efficiencies to the network were provided. The PCA

orthogonalizes the components of the input vectors and

orders the resulting orthogonal components (principal

Fig. 8. Typical behavior of the rms error on training and test
data sets during the training process.

Fig. 9. Experimental variation of the error during the training
process, for a neural network composed of 18 inputs, 3 outputs,
and 15 neurons in the hidden layer. The training requires 1300
couples. It is stopped when the error calculated on the valida-
tion set reaches a minimum (33 epochs).
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components) so that the largest variation is concentrated

in a few components. The principal components that

contribute to less than 1% in the variation of the data set

were eliminated (i.e., all components for which the eigen-

value represents less than 1% of the total inertia). These

two data preprocessing steps make the convergence of the

algorithm easier and therefore reduce the duration of the

training. In our case, the input number of the network is

reduced to 14. Thus training duration decreases from

4600 to 420 s.

A postprocessing step on the output data allows a scal-

ing back to their values in the initial range.

Fig. 10. Representation of each grating parameter calculated by
a neural network with exact inputs versus its theoretical values.
The training is performed with 1300 exact $input/target% calcu-
lated couples.

Fig. 11. Representation of each grating parameter calculated by
a neural network with experimental simulation inputs versus its
theoretical values. The training is performed with 1300 exact
$input/target% calculated couples.
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C. Particular Training: Early Stopping
One problem in using a neural network is to stop the

training adequately. Indeed, owing to the training algo-

rithm, output errors on training data may reach a value

as small as desired through an increase in the number of

epochs. Greater errors can then occur for unknown

samples. The network loses its capacity to generalize

new situations. Thus the $input/target% data set is ran-

domly split into three parts to avoid this overfitting: the

training, test, and validation data set. The first set,

which is the largest, is used for weight adjustment; the

second set, in stopping the training process; and the last

set, in controlling the correct operation of the process.

Fig. 12. Representation of each grating parameter calculated by
a neural network with exact inputs versus its theoretical value.
The training is performed with 1300 noisy $input/target% couples.

Fig. 13. Representation of each grating parameter calculated by
a neural network with experimental simulation inputs versus its
theoretical value. The training is performed with 1300 noisy
$input/target% couples.
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Thus at each epoch, after updating the weights by for-

warding the data from the training set and applying the

Levenberg–Marquardt algorithm, samples from the test

set are provided to the network and a test error is calcu-

lated. While the number of epochs is growing, a mini-

mum in this error evolution can be observed, whereas the

calculated error on the training data set is still decreas-

ing. This typical variation is depicted schematically in

Fig. 8. Thus the training must be stopped at this point to

produce a good generalization. The errors calculated on

the validation set must have the same behavior as the

test error; otherwise, the indication is that an unsuitable

division of the available data was made. This method is

called early stopping. Figure 9 represents the error

variations calculated on the different data sets when the

training is performed by a neural network involving 15

neurons in the hidden layer. The training is stopped at

the 26th epoch, corresponding to the maximum generali-

zation capability.

5. RESULTS AND DISCUSSION

The neural network performances were evaluated on the

basis of 100 new simulated gratings with parameters ran-

domly chosen in the range defined above. The rms error

calculated on each grating parameter p is defined by

e~ p !rms 5 F ~1/n !( ~ pex 2 pcal!
2G

1/2

, (1)

where n is the number of simulated gratings (n 5 100),

pex is the exact grating parameter value, and pcal is the

calculated value given by the neural network.

At first, a simulation is performed with these samples

by the neural network trained as described earlier. The

plots of neural calculated values pcal versus exact ones pex

are represented in Fig. 10. A linear regression analysis

is performed between them to quantify the estimation va-

lidity. The linear fit is practically identical to the perfect

one; i.e, its slope is near 1, the correlated coefficient R

5 1.00, and the y intercept near 0. The different rms er-

rors for b1 , b2 , and h are 0.56 nm, 1.03 nm, and 0.32 nm,

respectively.

Nevertheless, it is important to test the method in an

experimental condition. Adding a Gaussian noise to the

exact diffracted efficiencies as follows makes a simulation

of measured values,

hn 5 hex 2 N~0,0.03!, (2)

where hn is the noisy diffracted efficiency, hex the exact

one, and N(0,0.03) is the normal distribution with a zero

mean and a standard deviation equal to 3% of the diffrac-

tion efficiency. The results shown in Fig. 11 are clearly

less accurate than those obtained in Fig. 10. The rms er-

rors on grating parameters b1 , b2 , and h rise to 27.4,

43.81, and 12.96 nm, respectively. The best linear fit is

now different from the perfect one. The growth of the

rms error is due to the introduction of simulated experi-

mental errors with a Gaussian noise. This results from

the fact that theoretical couples ensure the training,

whereas the test is performed on noisy inputs. Thus the

neural network is not trained on the data set correspond-

ing to the experimental simulation. The solution to this

problem will be to train the network with real gratings.

But as stated above, the fabrication of a large number of

gratings requires a very long time, and, above all, it is im-

possible to determine the grating parameters with a suf-

ficient accuracy.

Another training of the neural network was then per-

formed by using a noisy data set deduced from exact data.

The same investigations were then made with exact in-

puts on the one hand (Fig. 12) and with experimental

simulated inputs on the other hand (Fig. 13). Linear fits

are nearly the same for both figures. All the training

rms errors and computation time are summarized in

Table 1 and Table 2, respectively. The errors on the the-

oretical input increase, whereas the error on experimen-

tal simulations decreases to reach nearly the same value

(5–10 nm). Moreover, an interesting effect is observed:

The training time decreases and reaches an acceptable

value (a few minutes). These results show that the neu-

ral network can preserve accurate predictions in experi-

mental simulation.

Finally, another type of validation of the proposed

method is presented: One grating was randomly chosen:

b1 5 0.094 mm, b2 5 0.473 mm, and h 5 0.260 mm.

Table 3 gives for this sample the grating parameters cal-

culated by the noisy training network from exact and

noisy inputs. Next, the transmitted zero-order t0 effi-

ciency is computed by the multilayer modal method by

Fourier expansion for these two different reconstructed

gratings. Figure 14 and Fig. 15 represent the efficiency

Table 1. Summary of the rms Errors Calculated

for Different Training and Test Sets

Training Sets Test Sets

rms Error (nm)

b1 b2 h

Training with exact Theoretical inputs 0.56 1.03 0.32

values Noisy inputs 27.4 43.81 12.96

Training with noisy Theoretical inputs 2.7 4.97 1.3

values Noisy inputs 7.39 11.81 3.37

Table 2. Effects of the Preprocessing (PCA) in the Reduction of the Input Number and Training Duration

Time for Two Cases

Training Sets

Without PCA With PCA

Number of Inputs Training Time Number of Inputs Training Time

Training with exact values 18 4635 8 320

Training with noisy values 18 450 14 300
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variation on varying the incident angle and the wave-

length of incident light, respectively. Deviations from

theoretical curves are small even if the incident angle and

the wavelength are far away from those used in the char-

acterizing process. This allows us to draw conclusions on

the validation of the method in any experimental condi-

tions.

6. CONCLUSION

This paper developed the possibilities offered by multiple-

layer neural networks to solve the inverse scattering

problem applied to the characterization of gratings. The

proposed method is closer to the operating conditions of a

grating than are local characterization methods, for ex-

ample, atomic force microscopy, because it achieves an av-

erage over thousands of groove profiles in the region

where the beam impinges on the grating. The classical

PCA used as a preprocessing of data has shown a very ef-

ficient effect in terms of the learning time of the network.

This results in a significant decrease in the number of

network inputs but unfortunately not in intensity mea-

surements. Neural training with noisy inputs permits us

to perform experimental estimation of parameters with

good accuracy. Furthermore, the learning method based

on theoretically calculated samples implies no limit in

resolution. Nevertheless, it must be pointed out that it is

not a real profile measurement but a grating modelization

in the sense of the best fit with a trapezoidal shape giving

the nearest diffracted intensities.

In our future research we will search for the most rel-

evant diffracted orders and their experimental conditions

in order to achieve a selection among all possible mea-

surements. The aim is to reduce the necessary number

of measured intensities which will be an important saving

of time. Comparison with real experimental results is

also one of our objectives.
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