A note on the set $\boldsymbol{A(A+A)}$ - Archive ouverte HAL Access content directly
Journal Articles Moscow Journal of Combinatorics and Number Theory Year : 2019

A note on the set $\boldsymbol{A(A+A)}$

(1) , (1) ,
1

Abstract

Let $p$ a large enough prime number. When $A$ is a subset of $\mathbb{F}_p\smallsetminus\{0\}$ of cardinality $|A|> (p+1)/3$, then an application of Cauchy-Davenport Theorem gives $\mathbb{F}_p\smallsetminus\{0\}\subset A(A+A)$. In this note, we improve on this and we show that if $|A|\ge 0.3051 p$ then $A(A+A)\supseteq\mathbb{F}_p\smallsetminus\{0\}$. In the opposite direction we show that there exists a set $A$ such that $|A| > (1/8+o(1))p$ and $\mathbb{F}_p\smallsetminus\{0\}\not\subseteq A(A+A)$.

Dates and versions

ujm-02060809 , version 1 (07-03-2019)

Identifiers

Cite

Pierre-Yves Bienvenu, François Hennecart, Ilya Shkredov. A note on the set $\boldsymbol{A(A+A)}$. Moscow Journal of Combinatorics and Number Theory, 2019, 8 (2), pp.179-188. ⟨10.2140/moscow.2019.8.179⟩. ⟨ujm-02060809⟩
48 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More