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ABSTRACT
Speckle reduction is a long-standing topic in SAR data pro-
cessing. Continuous progress made in the �eld of image
denoising fuels the development of methods dedicated to
speckle in SAR images. Adaptation of a denoising technique
to the speci�c statistical nature of speckle presents variable
levels of dif�culty. It is well known that the logarithm trans-
form maps the intrinsically multiplicative speckle into an
additive and stationary component, thereby paving the way
to the application of general-purpose image denoising meth-
ods to SAR intensity images. Multi-channel SAR images
such as obtained in interferometric (InSAR) or polarimetric
(PolSAR) con�gurations are much more challenging. This
paper describes MuLoG, a generic approach for mapping
a multi-channel SAR image into real-valued images with
an additive speckle component that has a variance approxi-
mately constant. With this approach, general-purpose image
denoising algorithms can be readily applied to restore InSAR
or PolSAR data. In particular, we show how recent denois-
ing methods based on deep convolutional neural networks
lead to state-of-the art results when embedded with MuLoG
framework.

Index Terms� SAR tomography, structural information,
spatial regularization

1. INTRODUCTION

Most SAR satellites now offer not only an image of back-
scattered echoes but also polarimetric information and, by
combining data from different satellites or different passes,
interferometric information. Despite the efforts put during the
development of Earth observation satellites to achieve a high
spatial resolution, polarimetric capability and small temporal
revisit times (to minimize temporal decorrelation in interfer-
ometric analyses), SAR images suffer from an intrinsic lim-
itation due to speckle phenomenon. Coherent combination
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of several echoes back-scattered by elements located within
the same resolution cell lead to constructive or destructive
summations. The resulting complex amplitude suffers from
strong �uctuations known as speckle. To exploit SAR satel-
lites at their full potential, it is therefore crucial to apply im-
age processing methods that reduce speckle while preserving
at best the spatial, polarimetric and interferometric informa-
tion.

The �eld of speckle reduction methods is rich of several
decades of development. Several families of image process-
ing techniques form the core of these methods. Neighbor-
hood �lters such as Lee’s sigma �lter [1, 2] consider neigh-
bor pixels whose values are close enough to the value of the
pixel under consideration. Markov random �elds model that
some local pixel con�gurations (corresponding to �at areas or
smooth edges) are more frequent than others, see for example
[3, 4, 5]. Wavelets transforms are used to better separate use-
ful signal from speckle �uctuations, the signal of interest is
concentrated in a few large coef�cients after a wavelet trans-
form, see [6, 7]. Patch-based methods identify similar pix-
els by comparing small windows (so-called patches), �ltering
is then performed by adaptively selecting and combining the
most relevant pixel values, see [8, 9, 10, 11] and the review
[12].

Speckle reduction is much simpler in the case of single-
channel intensity images. Speckle �uctuations, multiplica-
tive by nature, can be turned into additive and homoscedas-
tic (i.e., with a stationary variance) by applying a logarithm
transform. Speckle reduction then resembles Gaussian de-
noising and standard image denoising algorithms can be ap-
plied. The case of multi-channel images is much more chal-
lenging. Speckle �uctuations between the channels are indeed
correlated and therefore require a joint processing.

This paper illustrates how MuLoG, a generic approach
that we recently introduced [13], can alleviate the dif�culty
of applying state-of-the-art image denoising techniques to the
case of speckle reduction in multi-channel SAR images.

The structure of the paper is the following: we �rst re-
call the speckle distribution for multi-channel SAR images,



describe how speckle in multi-channel images can be trans-
formed into an additive component with stabilized variance,
then we present the general framework of MuLoG. Finally,
we illustrate the performance of MuLoG for speckle reduc-
tion in PolSAR and InSAR images.

2. SPECKLE STATISTICS IN
MULTI-CHANNEL SAR IMAGES

The diffusion vector ~k 2 CD at a given pixel of a D-channel
SAR image can be statistically modeled, under Goodman’s
fully developed speckle, as a random realization of Gaussian
process:

p(~kj�) =
1

�Dj�j
exp

�
�~ky��1~k

�
; (1)

where � = Ef~k~kyg is a D � D complex covariance matrix
with E the mathematical expectation, y indicates the Hermi-
tian transpose and j�j stands for the determinant of matrix �.
Diagonal elements of � correspond to the radar cross-section
of scatterers in each channel. Off-diagonal elements de�ne
the complex correlation between channels, and depending on
the SAR con�guration (InSAR, PolSAR, PolInSAR), convey
interferometric and/or polarimetric information. To perform
interferometric or polarimetric analyses, it is thus necessary to
estimate �. The maximum likelihood estimator corresponds
to the sample covariance matrix C de�ned by:

C =
1
L

LX

t=1

~kt:~kyt : (2)

When L � D, the sample covariance matrix is distributed
according to a Wishart distribution:

pC(Cj�) =
LLDjCjL�D

�D(L)j�jL
exp

�
�L tr(��1C)

�
; (3)

where tr stands for the matrix trace and � is the multivari-
ate gamma function. Fluctuations of the sample covariance
matrix C around the true covariance � depend on �. In
particular, the variance Var[tr(C)] is equal to 1

L tr(�2), see
[14]. Speckle �uctuations in the covariance matrix C are thus
signal-dependent, see �gure 1.

3. VARIANCE STABILIZATION
VIA MATRIX LOGARITHM

Speckle �uctuations can be made almost signal-independent
by the matrix logarithm transform:

C 7! ~C = log C = E diag( ~�)E�1 ; (4)

where ~�i = log �i , E 2 CD�D is the matrix whose col-
umn vectors are eigenvectors (with unit norm) of C, � 2 RD

+

Fig. 1. Illustration of the non-stationarity of speckle in a po-
larimetric image (F-SAR airborne image cDLR): regions (a)
and (b) display very different variances because the radiome-
try and polarimetric behavior differ in these two areas.

is the vector of corresponding eigenvalues, such that C =
E diag(�)E�1, and ~� 2 RD. Its inverse transform is the
matrix exponential de�ned similarly. Log-transformed co-
variance matrices ~C are distributed according to a Wishart-
Fisher-Tippett distribution [13]:

p ~C( ~Cj ~�) = �eL tr( ~C� ~�) exp
�
�L tr(e ~Ce� ~�)

�
; (5)

with � a scalar that depends only on D, L and ~C and that
will be irrelevant when estimating ~� from a given ~C. This
distribution is the multi-channel generalization of the well-
known Fisher-Tippett distribution of log-transformed inten-
sity images corrupted by speckle. The �rst two moments of
the trace of ~C are known in closed form [15]:

E[tr ~C] = tr ~� +
DX

i=1

	(0; L� i+ 1)�D logL ;

and Var[tr ~C] =
DX

i=1

	(1; L� i+ 1) ; (6)

which shows that, (i) like in the case of a single-channel inten-
sity image, a bias is present when averaging log-transformed
data, and (ii) the variance (of the trace) is signal-independent
(i.e., independent from �). Numerical experiments show that
not only the variance of the trace is stabilized, but the variance
of each term of the covariance matrix C is approximately
signal-independent. The matrix logarithm thus offers a way
to extend Gaussian denoisers to speckle reduction in multi-
channel SAR images.

4. MULOG GENERIC FRAMEWORK

Figure 2 summarizes the approach followed by MuLoG to re-
duce speckle noise in an interferometric or polarimetric SAR



Fig. 2. MuLoG generic approach to speckle reduction in multi-channel SAR data. Images illustrate the case of SAR interfer-
ometry (RAMSES airborne sensor cONERA), see also �gure 3.

image. The speckle-corrupted input image (an InSAR im-
age in the illustration) is transformed �rst by the matrix log-
arithm transformed introduced in equation (4), then by an
af�ne transform that extracts real-valued channels (4 chan-
nels in the case of InSAR) where the information of inter-
est is decorrelated and the speckle �uctuations are station-
ary and equalized. By decorrelating the channels, the subse-
quent Gaussian denoising steps can be applied separately on
each channel. This is the core of the denoising process repre-
sented by the box �Wishart-Fisher-Tippett denoiser�. Gaus-
sian denoising steps are alternated with a non-linear correc-
tion applied jointly on all channels in order to account for
the speci�c distribution of multi-channel SAR data that un-
derwent a matrix-logarithm transform, as de�ned in equation
(5). As can be observed on �gure 2, at the end of the Wishart-
Fisher-Tippett denoising, the channels have almost no resid-
ual �uctuations. The �nal step of MuLoG is to recombine
all channels and map them back to the original domain with
a matrix exponential. A more detailed description of each
step and their implementation is available in the journal paper
[13] and the open-source implementation https://www.
math.u-bordeaux.fr/�cdeledal/mulog.php.

5. APPLICATION TO POLSAR AND INSAR

MuLoG is a generic approach in the sense that (i) it applies
to mono or multi-channel images (intensity, interferometric,
polarimetric, PolInSAR, multi-baseline images), and (ii) the
Gaussian denoiser embedded in the Wishart-Fisher-Tippett
denoiser (central block in �gure 2) can be selected among
various state-of-the-art denoising algorithms in standard im-
age processing literature. We illustrate this genericity with
two speckle-reduction results. Figure 3 illustrates the capabil-
ity of MuLoG to restore interferometric information. An air-
borne image (ONERA’s RAMSES sensor) is processed with
MuLoG and the well-established BM3D denoising algorithm
[16]. Figure 4 presents a restoration result of polarimetric
information on an airborne image acquired by the DLR’s E-
SAR sensor. The Gaussian denoiser used is a very recent al-
gorithm based on a convolutional neural network (CNN) [17].

6. CONCLUSION

This paper described MuLoG, a generic and open-source
method for speckle reduction in SAR interferometry or SAR
polarimetry. A distinctive feature of MuLoG is its ability to



Fig. 3. Restoration of an InSAR image with MuLoG. First
row: original speckle corrupted image (airborne image of
Toulouse, France by RAMSES cONERA) (a) intensity, (b)
interferometric phase, (c) coherence; second row: restored
image with MuLoG and BM3D Gaussian denoiser (d) inten-
sity, (e) interferometric phase, (f) coherence.

include almost any standard Gaussian denoising algorithm.
It therefore provides a simple and natural way to apply most
recent denoising methods, in particular those based on deep
learning. Moreover, by visually comparing the results ob-
tained when using different denoising algorithms, most of the
method-speci�c artifacts can be discarded.
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