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Abstract

Due to the inability of the accuracy-driven methods to address the
challenging problem of learning from imbalanced data, several alterna-
tive measures have been proposed in the literature, like the Area Un-
der the ROC Curve (AUC), the Average Precision (AP), the F-measure,
the G-Mean, etc. However, these latter measures are neither smooth,
convex nor separable, making their direct optimization hard in practice.
In this paper, we tackle the challenging problem of imbalanced learning
from a nearest-neighbor (NN) classification perspective, where the minor-
ity examples typically belong to the class of interest. Based on simple
geometrical ideas, we introduce an algorithm that rescales the distance
between a query sample and any positive training example. This leads
to a modification of the Voronoi regions and thus of the decision bound-
aries of the NN classifier. We provide a theoretical justification about
this scaling scheme which inherently aims at reducing the False Negative
rate while controlling the number of False Positives. We further formally
establish a link between the proposed method and cost-sensitive learning.
An extensive experimental study is conducted on many public imbalanced
datasets showing that our method is very effective with respect to popu-
lar Nearest-Neighbor algorithms, comparable to state-of-the-art sampling
methods and even yields the best performance when combined with them.

1 Introduction

While the machine learning community can benefit nowadays from larger and
larger datasets for optimizing provably accurate classifiers, many real world
applications still suffer from a lack of data, especially in imbalanced learning,
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where the positive examples are very scarce compared with the number of nega-
tive samples [1,4,8]. This is typically the case in intrusion detection, health care
insurance or bank fraud identification, and more generally anomaly detection,
e.g., in medicine or in industrial processes. In such a setting, the training set
is composed of a few positive examples (e.g., the frauds) and a huge amount of
negative samples (e.g., the genuine transactions). Standard learning algorithms
struggle to deal with this imbalance scenario because they are typically based
on the minimization of (a surrogate of) the 0-1 loss. Therefore, a trivial solution
consists in assigning the majority label to any test query, leading to a high per-
formance from an accuracy perspective but completely missing the (positive)
examples of interest. To overcome this issue, several strategies have been devel-
oped over the years. The first one consists in the optimization of loss functions
based on measures that are more appropriate for this context such as the Area
Under the ROC Curve (AUC), the Average Precision (AP), the G-mean (GM),
the Balanced-Accuracy (BA) or the F-measure to cite a few [7,16,31]. The main
pitfalls related to such a strategy concern the difficulty to directly optimize non
smooth, non separable and non convex measures (see [3] for the specific case of
the F-measure). A simple and usual solution to fix this problem consists in us-
ing off-the-shelf learning algorithms (maximizing the accuracy) and a posteriori
pick the model with the highest AP, GM, BA or F-measure. Unfortunately, this
might be often suboptimal. A more elaborate solution aims at designing differen-
tiable versions of the previous non-smooth measures and optimizing them, e.g.,
as done by gradient boosting in [17] with a smooth surrogate of the Mean-AP.
The second family of methods is based on the modification of the distribution
of the training data using sampling strategies [15]. This is typically achieved by
removing examples from the majority class, as done, e.g., in ENN or Tomek’s
Link [32], and/or by adding examples from the minority class, as in SMOTE [9]
and its variants, or by resorting to generative adversarial models [19]. One
peculiarity of imbalanced learning can be interpreted from a geometric perspec-
tive. As illustrated in Fig. 1 (left) which shows the Voronoi cells on an artificial
imbalanced dataset (where two adjacent cells have been merged if they concern
examples of the same class), the regions of influence of the positive examples
are much smaller than that of the negatives. This explains why at test time, in
imbalanced learning, the risk to get a false negative (e.g., a fraud that is wrongly
classified as a genuine transaction) is high. A large number of false negatives
(FN) leads to a dramatic decrease of the aforementioned measures that all rely
on a fine balance between FN and the number of false positives FP , building
blocks of the so-called Precision = TP

TP+FP and Recall = TP
TP+FN where TP

is the number of true positives. Note that increasing the regions of influence
of the positives would mechanically reduce FN . However, not controlling the
expansion of these regions, as illustrated in Fig. 1 (right), may have a dramatic
impact on FP , and thus on the previous performance measures.

The main contribution of this paper is about the problem of finding the ap-
propriate trade-off (Fig. 1 (middle)) between the two above-mentioned extreme
situations (large FP or FN , both leading to a poor performance at test time).
A natural way to increase the influence of positives may consist in using gener-
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Figure 1: Toy imbalanced dataset: On the left, the Voronoi regions around
the positives are small. The risk to generate false negatives (FN) at test time
is large. On the right: by increasing too much the regions of influence of the
positives, the probability to get false positives (FP) grows. In the middle: an
appropriate trade-off between the two previous situations.

ative models (like GANs [19]) to sample new artificial examples, mimicking the
negative training samples. However, beyond the issues related to the parameter
tuning, the computation burden and the complexity of such a method, using
GANs to optimize the precision and recall is still an open problem (see [30] for
a recent study on this topic). We show in this paper that a much simpler strat-
egy can be used by modifying the distance exploited in a k-nearest neighbor
(k−NN) algorithm [10] which enjoys many interesting advantages, including its
simplicity, its capacity to approximate asymptotically any locally regular den-
sity, and its theoretical rootedness [22,23,27]. k−NN also benefited from many
algorithmic advances during the past decade in the field of metric learning,
aiming at optimizing under constraints the parameters of a metric, typically
the Mahalanobis distance, as done in LMNN [35] or ITML [11] (see [5, 6] for a
survey). Unfortunately, existing metric learning methods are dedicated to en-
hance the k−NN accuracy and do not focus on the optimization of criteria, like
the F-measure or G-mean, in scenarios where the positive training examples are
scarce. A geometric solution to increase, at a very low cost, the region of influ-
ence of the minority class consists in modifying the distance when comparing
a query example to a positive training sample. More specifically, we formally
show in this paper that the optimization of any (FN ,FP )-based performance
measure, which are well suited to deal with imbalanced scenarios, is facilitated
by scaling the distance to any positive by a coefficient γ ∈ [0, 1] leading to
the expansion of the Voronoi cells around the minority examples. An illustra-
tion is given in Fig. 1 (middle) which might be seen as a good compromise
that results in the reduction of FN while controlling the risk to increase FP .
Note that our strategy boils down to modifying the local density of the positive
examples. For this reason, we claim that it can be efficiently combined with
SMOTE-based sampling methods whose goal is complementary and consists in
generating examples on the path linking two (potentially far) positive neighbors.
Our experiments will confirm this intuition.

This paper improves substantially on our previous work [33], both with in-
creased details and new algorithmic and experimental contributions: (i) we show
an explicit link between the proposed method, called γk−NN, and cost-sensitive
learning, (ii) we present a local version of our method that uses clustering to
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adapt the parameters to the different regions of the input space, and (iii) we
rework and extend the experimental study to incorporate new performance mea-
sures and to give a qualitative analysis on the well-known image dataset MNIST.

The rest of the paper is organized as follows. Section 2 is dedicated to
the introduction of our notations and an overview of the main performance
measures that will be used to evaluate the compared methods. The related work
is presented in Section 3. Section 4 is devoted to the presentation of our method
γk−NN. This section includes a theoretical analysis of our method as well as
a presentation of a local extension aiming at capturing local specificities of the
feature space. We finally establish a link between γk−NN and cost-sensitive
learning. The last part of this paper is dedicated to an extensive experimental
study performed on 28 imbalanced datasets (see Section 5). In this comparative
analysis, we give evidence of the complementarity of our method with sampling
strategies. We finally conclude in Section 6.

2 Notations and Evaluation Measures

We consider a training sample S = {(xi, yi), i = 1, ...,m} of size m, drawn from
an unknown joint distribution Z = X × Y, where X = Rp is the feature space
and Y = {−1, 1} is the set of labels. Let us assume that S = S+ ∪ S− with m+

positives ∈ S+ and m− negatives ∈ S− where m = m+ +m−.
Learning from imbalanced datasets requires to optimize appropriate mea-

sures that take into account the scarcity of positive examples. Several of them
rely on the following two quantities: the Recall (also called True Positive
Rate (TPR) or sensitivity) which measures the capacity of the model to re-
call/detect positive examples, and the Precision (also called Positive Prediction
Value (PPV )) which is the confidence in the prediction of a positive label. They
are defined as follows:

Recall =
TP

TP + FN
and Precision =

TP

TP + FP
,

where FP (resp. FN) is the number of false positives (resp. negatives) and TP
is the number of true positives. Since one can arbitrarily improve the Precision if
there is no constraint on the Recall (and vice-versa), they are usually combined
into a single measure.
For instance, the F-measure [29] (or Fβ score), which is widely used in fraud
and anomaly detection [18], is defined as the harmonic mean of the Recall and
Precision:

Fβ = (1 + β2)
Precision× Recall

β2 × Precision + Recall
,

where β is set such that the Recall is considered β times as important as the
Precision. Note that F1 (i.e. β = 1) considers the Precision and Recall equally.
The G-measure (G1) can also be used for imbalanced data classification [14].
Unlike F1, it rather considers the geometric mean of Precision and Recall:

G1 =
√

Precision× Recall.
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While Fβ and G1 consider both Recall and Precision, the G-mean (GM) [24]
rather makes use of the Recall (or TPR) and the False Negative Rate (TNR)
as follows:

GM =
√
TPR× TNR =

√
TP

TP + FN
× TN

TN + FP
.

In other words, it computes the geometric mean of TPR and TNR. Thus,
it gives a higher importance to the negative class, compared to the previous
measures. Without being exhaustive, a last performance measure that can be
used in an imbalanced setting is the Balanced Accuracy (BA) [7] which also
relies on TPR and TNR and is defined as the mean accuracy of the two classes:

BA = (TPR+ TNR)/2

In the experimental section of this paper, we will resort to these widely used
measures to asses the efficiency of our proposed method to overcome the problem
of scarcity of positive samples.

3 Related Work

In this section, we present the main strategies that have been proposed in the
literature to address the problem of learning from imbalanced datasets. We first
present methods specifically dedicated to enhance a k−NN classifier. Then, we
give an overview of the main sampling strategies used to balance the two classes.
All these methods will be used in the experimental comparison in Section 5.

3.1 Distance-based Methods

Several strategies have been devised to improve k−NN. The oldest method is
certainly the one presented in [12] which consists in associating to each neighbor
a voting weight that is inversely proportional to its distance to a query point x.
The assigned label ŷ of x is defined as:

ŷ =
∑

xi∈kNN(x)

yi ×
1

d(x,xi)
,

where kNN(x) stands for the set of the k nearest neighbors of x. A more
refined version consists in taking into account both the distances to the nearest
neighbors and the distribution of the features according to the class p(xi |
yi) [26]. Despite these modifications in the decision rule, the sparsity of the
positives remains problematic and it is possible that no positives fall in the
neighborhood of a new query x. To tackle this issue, a variant of k−NN, called
kPNN [38], is to consider the region of the space around a new query x which
contains exactly k positive examples. By doing so, the authors are able to
use the density of the positives to estimate the probability of belonging in the
minority class.
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A more recent version has been shown to perform better than the two pre-
vious approaches: kRNN [39]. If the idea remains similar (i.e. estimating the
local sparsity of minority examples around a new query), the posterior proba-
bility of belonging in the minority class is adjusted so that it considers both the
local and global disequilibrium for the estimation. In [2], the authors use both
the label and the distance to the neighbors (xi, yi) to define a scaled metric d′

from the Euclidean distance d, as follows:

d′(x,xi) =
(mi

m

)1/p
d(x,xi),

where mi is the number of examples in the class yi. As we will see later, this
method falls in the same family of strategies as our contribution, aiming at scal-
ing the distance to the examples according to their label. However, three main
differences explain the superiority of our method, observed in the experiments:
(i) kRNN fixes d′ in advance while we will automatically adapt the scaling fac-
tor to optimize the considered performance measure; (ii) because of (i), d′ needs
to take into account the dimension p of the feature space (and so will tend to
d as p grows) while our method captures the intrinsic dimension of the space
by selecting the best weight; (iii) d′ is useless when combined with sampling
strategies (indeed, mi

m would tend to be uniform) while our method will allow
us to scale differently the distance to the original positive examples and the ones
artificially generated.

Another way to assign weights to each class, which is close to the sampling
methods presented in the next section, is to duplicate the positive examples
according to the Imbalance Ratio IR = m−/m+. Thus, it can be seen as a
uniform over-sampling technique, where all positives are replicated the same
number of times. However, note that this method requires to work with k > 1.

A last family of methods that try to improve k−NN is related to metric
learning [5,6]. LMNN [35] or ITML [11] are two famous examples which optimize
under constraints a Mahalanobis distance dM(x,xi) =

√
(x− xi)>M(x− xi)

parameterized by a positive semi-definite (PSD) matrix M. Such methods seek
a linear projection of the data in a latent space where the Euclidean distance
is applied. As we will see in the following, our scaling method is a special case
of metric learning which looks for a diagonal matrix (but applied only when
comparing a query to a positive example) and which behaves well whatever the
considered performance measure.

3.2 Sampling Strategies

One way to overcome the issues induced by the lack of positive examples is
to compensate artificially the imbalance between the two classes. Sampling
strategies [15] have been proven to be very efficient to address this problem. In
the following, we overview the most used methods in the literature.

The Synthetic Minority Over-sampling Technique [9] (SMOTE) over-samples
a dataset by creating new synthetic positive data. For each minority example
x, it randomly selects one of its k nearest positive neighbors and then creates
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a new random positive point on the line between this neighbor and x. This is
done until some desired ratio is reached.

Borderline-SMOTE [20] is an improvement of the SMOTE algorithm. While
the latter generates synthetic points from all positive points, BorderLine-SMOTE
only focuses on those having more negatives than positives in their neighbor-
hood. More precisely, new samples are generated if the number n of negatives
in the k-neighborhood is such that k/2 ≤ n ≤ k.

The Adaptive Synthetic [21] (ADASYN) sampling approach is also inspired
from SMOTE. By using a weighted distribution, it gives more importance to
classes that are more difficult to classify, i.e. where positives are surrounded by
many negatives, and thus generates more synthetic data for these classes.

Two other strategies combine an over-sampling step with an under-sampling
procedure. The first one uses the Edited Nearest Neighbors [36] (ENN) algo-
rithm on the top of SMOTE. After SMOTE has generated data, the ENN
algorithm removes samples that are misclassified by their k nearest neighbors.
The second one combines SMOTE with Tomek’s link [32]. The latter is a pair
of points (xi,xj) from different classes for which there is no other point xk ver-
ifying d(xi,xk) ≤ d(xi,xj) or d(xk,xj) ≤ d(xi,xj). In other words, xi is the
nearest neighbor of xj and vice-versa. If so, one removes the example of (xi,xj)
that belongs to the majority class. Note that both strategies tend to eliminate
the overlapping between classes.

Interestingly, we can note that all the previous sampling methods try to
overcome the problem of learning from imbalanced data by resorting to the
notion of k-neighborhood. This is justified by the fact that k−NN has been
shown to be a good estimate of the density at a given point in the feature space.

In our contribution, we also leverage k−NN but with a different approach.
Instead of generating (many) new examples (which would have a negative im-
pact from a complexity perspective), we locally modify the density around the
positive points. We achieve this by rescaling the distance between a test sam-
ple and the positive training examples. We show that such a strategy can be
efficiently combined with sampling methods, whose goal is complementary, by
potentially generating new examples in regions of the space where the minority
class is not present.

4 Proposed Approach

In this section, we present our γk−NN method which works by scaling the
distance between a query point and positive training examples by a factor.

4.1 An Adjusted k−NN algorithm

Statistically, when learning from imbalanced data, a new query x has more
chance to be close to a negative example due to the rarity of positives in the
training set, even around the mode of the positive distribution. We have seen
two families of approaches that can be used to counteract this effect: (i) creating
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new synthetic positive examples, and (ii) changing the distance according to the
class. The approach we propose falls into the second category.

We suggest to modify how the distance to the positive examples is computed,
in order to compensate for the imbalance in the dataset. We artificially bring a
new query x closer to any positive data point xi ∈ S+ in order to increase the
effective area of influence of positive examples. The new measure dγ that we
propose is defined using an underlying distance d (e.g., the Euclidean distance)
as follows:

dγ(x,xi) =

{
d(x,xi) if xi ∈ S−,
γ · d(x,xi) if xi ∈ S+.

(1)

As we will tune the γ parameter, this new way to compute the similarity to a
positive example is close to a Mahalanobis-distance learning algorithm, looking
for a PSD matrix, as previously described. However, the matrix M is restricted
here to be γ2 · I, where I refers to the identity matrix. Moreover, while metric
learning typically works by optimizing a convex loss function under constraints,
our γ is simply tuned such as maximizing the non convex performance measure.
Lastly, and most importantly, it is applied only when comparing the query to
positive examples. As such, dγ is not a proper distance. However, this is what
allows it to compensate for the class imbalance. In the binary setting, there
is no need to have a γ parameter for the negative class, since only the relative
distances are used. In the multi-class setting with K classes, we would have to
tune up to K − 1 values of γ.

Before formalizing the γk−NN algorithm that will leverage the distance dγ ,
we illustrate in Fig. 2, on 2D data, the decision boundary induced by a nearest
neighbor binary classifier that uses dγ . We consider an elementary dataset with
only two points, one positive and one negative. The case of γ = 1, which is a
traditional 1-NN is shown in a thick black line. Lowering the value of γ below 1
brings the decision boundary closer to the negative point, and eventually tends
to surround it very closely. Fig 3 shows, with more complex (toy) datasets, that
γ controls how much we want to push the boundary towards negative examples.
Fig 3 (right) should be imagined as a zoomed-in boundary between the classes,
where one class is 20 times less represented. It shows that, due to sampling, the
1-NN boundary wrongly causes regions of false negatives, while γk−NN is able
to correct the bias.

We can now present γk−NN (see Algorithm 1) that is parameterized by the
γ parameter. It has the same overall complexity as k−NN. The first step to
classify a query x is to find its k nearest negative neighbors and its k nearest
positive neighbors. Then, the distances to the positive neighbors are multiplied
by γ, to obtain dγ . These 2k neighbors are then ranked and the k closest ones
are used for classification (with a majority vote, as in k−NN). It should be noted
that, although dγ does not define a proper distance, we can still use any existing
fast nearest neighbor search algorithm, because the actual search is done only
using the original distance d (but twice, once for S+, once for S−).
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Figure 2: Evolution of the decision boundary based on dγ , for a 1-NN classifier,
on a 2D dataset with one positive (resp. negative) instance represented by a
blue cross (resp. red point). The value of γ is given on each boundary (γ = 1
on the thick line).
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Figure 3: Behavior of the decision boundary according to the γ value for the
1-NN classifier on toy datasets. Positive points are shown as blue crosses and
negatives ones as red dots. The black line represents the standard decision
boundary for the 1-NN classifier, i.e. when γ = 1.

4.2 Theoretical analysis

In this section, we formally analyze what could be a good range of values for
γ in our γk−NN algorithm. To this aim, we study what impact γ has on the
probability to get a false positive (and false negative) at test time and explain
why it is important to choose γ < 1 when the imbalance in the data is significant.
The following analysis is made for k = 1 but note that the conclusion still holds
for k > 1.

Proposition 1. (False Negative probability) Let dγ(x,x+) = γd(x,x+), ∀γ > 0,
be our modified distance used between a query x and any positive training exam-
ple x+, where d(x,x+) is some distance function. Let FNγ(z) be the probability
for a positive example z to be a false negative using Algorithm (1). The following
result holds: if γ ≤ 1,

FNγ(z) ≤ FN(z)

Proof. (sketch of proof) Let ε be the distance from z to its nearest-neighbor
Nz. z is a false negative if Nz ∈ S− that is all positives x′ ∈ S+ are outside the
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Algorithm 1: Classification of a new example with γk−NN.

Input : a query x to be classified, a set of labeled samples S = S+ ∪ S−,
a number of neighbors k, a positive real value γ, a distance

function d

Output: the predicted label of x

NN−,D− ← nn(k,x, S−) // nearest negative neighbors with their

distances

NN+,D+ ← nn(k,x, S+) // nearest positive neighbors with their

distances

D+ ← γ · D+

NN γ ← firstK
(
k, sortedMerge((NN−,D−), (NN+,D+))

)
y ← if

∣∣NN γ ∩NN+
∣∣ ≥ k

2 else // majority vote based on NN γ

return y

sphere S ε
γ

(z) centered at z of radius ε
γ . Therefore,

FNγ(z) =
∏

x′∈S+

(
1− P (x′ ∈ S ε

γ
(z))

)
,

=
(

1− P (x′ ∈ S ε
γ

(z))
)m+

(2)

while

FN(z) = (1− P (x′ ∈ Sε(z)))
m+ . (3)

Solving (2) ≤ (3) implies γ ≤ 1.

This result means that satisfying γ < 1 allows us to increase the decision
boundary around positive examples (as illustrated in Fig. 3), yielding a smaller
risk to get false negatives at test time. An interesting comment can be made
from Eq.(2) and (3) about their convergence. As m+ is supposed to be very
small in imbalanced datasets, the convergence of FN(z) towards 0 is pretty
slow, while one can speed-up this convergence with FNγ(z) by increasing the
radius of the sphere S ε

γ
(z), that is taking a small value for γ.

Proposition 2. (False Positive probability) Let FPγ(z) be the probability for
a negative example z to be a false positive using Algorithm (1). The following
result holds: if γ ≥ 1,

FPγ(z) ≤ FP (z)

Proof. (sketch of proof) Using the same idea as before, we get:

FPγ(z) =
∏

x′∈S−

(1− P (x′ ∈ Sγε(z))) ,

= (1− P (x′ ∈ Sγε(z)))
m− (4)
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Table 1: Cost matrix for a binary classification task.
Predicted positive Predicted negative

Actual positive cTP cFN
Actual negative cFP cTN

while

FP (z) = (1− P (x′ ∈ Sε(z)))
m− . (5)

Solving (4) ≤ (5) implies γ ≥ 1.

As expected, this result suggests to take γ > 1 to increase the distance
dγ(z,x+) from a negative test sample z to any positive training example x+

and thus reduce the risk to get a false positive. It is worth noticing that while
the two conclusions from Propositions 1 and 2 are contradictory, the convergence
of FPγ(z) towards 0 is much faster than that of FNγ(z) because m− >> m+ in
an imbalance scenario. Therefore, fulfilling the requirement γ > 1 is much less
important than satisfying γ < 1. For this reason, we will impose our Algorithm
(1) to take γ ∈ [0, 1].

4.3 Link with cost-sensitive learning

In this section, we show that it is possible to establish a link between the cost-
sensitive learning framework [13] and our algorithm γk−NN. The goal of cost-
sensitive learning is to assign different costs to each entry of the confusion matrix
as depicted in Table 1 for a binary setting where we will denote the 4 costs as
cTP , cFN , cFP and cTN . Cost sensitive methods are widely used, including in
imbalanced scenarios, to give more importance (i.e. higher weights/costs) to
the examples of the positive/minority class. By doing so, a learned classifier
will focus more on decreasing the loss associated to the positive samples. We
show here that, despite not being learned by optimizing a loss function, γk−NN
can still be seen in the lens of cost-sensitive learning.

Let us assume that the correct predictions are not penalized, i.e. cTN =
cTP = 0 and that cFP and cFN are such that cFP + cFN = 1 (without loss of
generality, as only their relative values matter here). Let x− (resp. x+) be the
nearest negative (resp. positive) neighbor of an example x. Suppose that we
have a model η(x) = P(y = 1 | x) that gives the probability for x to be positive.
Then the positive label will be assigned to x if η(x) > 1/2, without considering
the costs of miss-classification. Taking these latter into account changes the
classification rule. Indeed, to minimize the cost-sensitive risk, an example x
must be predicted positive if:

cFP P(y = 0 | x) ≤ cFN P(y = 1 | x),

⇔ cFP (1− η(x)) ≤ cFN η(x),

⇔ η(x) ≥ cFP .
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On the other hand, our algorithm γk−NN classifies an example x as pos-
itive if d(x,x−) > γd(x,x+). Given this classification rule, we can show that
γk−NN resorts to an approximation η̂(x) of η(x) for a given weighted problem,
as follows:

d(x,x−) > γd(x,x+),

⇔ d(x,x−)(1 + γ) > γ(d(x,x+) + d(x,x−)),

⇔ d(x,x−)

d(x,x+) + d(x,x−)
>

γ

1 + γ
.

Setting cFP =
γ

γ + 1
(and therefore cFN = 1− γ

γ + 1
=

1

γ + 1
) and η̂(x) =

d(x,x−)

d(x,x+) + d(x,x−)
finishes to establish the link between γk−NN and cost-

sensitive learning. Note that if γ = 1 then cFP = cFN = 1
2 implying that we

retrieve a standard k−NN classifier which treats positive and negative samples
equally without cost sensitivity.

The reader interested in cost-sensitive k−NN classifiers can refer to [28,37].

4.4 Towards a local approach of γk−NN

In what have been presented so far, we consider a single γ for the whole input
space. While this has the advantage of having a single parameter to tune, it
removes the ability to capture non-stationary class imbalance. Indeed, it is
possible that a γ value is optimal in one part of the space but not in another.

We thus propose a non-stationary version of our algorithm, called local-
γk−NN. Conceptually, we could have a γx for every position x in the space.
However, such an over parameterized model would loose the simplicity of the
proposed approach and increase the risk of overfitting. To deal with these two
issues, we rather partition the input space into q ∈ N? sub-spaces, {Cj}qj=1,
using a clustering algorithm (e.g., k-means). Then a value γj , for all j = 1, ..., q
is tuned according to the performance measure of interest and using only the
available data in the subspace Cj . To classify a test query that falls in cluster
j we use γk−NN (with γj) in this cluster. We will show in the experimental
Section 5.4 two possible variants of this local approach.

5 Experiments

This part is devoted to an extensive experimental evaluation of γk−NN on
public datasets with comparisons to classic distance-based methods and state-
of-the-art sampling strategies able to deal with imbalanced data. All the results
are reported for nearest neighbor classification with k = 1 and 3 by considering
the four different evaluation measures introduced in Section 2 (F1, G1, GM and
BA). We also conduct, in Section 5.3, a qualitative analysis on the behavior of
our approach on the famous MNIST image dataset [25]. Finally, we conclude
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Table 2: Information about the studied public datasets sorted by imbalance
ratio IR. The target column refers to the label chosen as the minority class (i.e.
positive examples) in the dataset. The short name of each dataset is given first
and will be used, for the sake of readability, in some graphs of this study. (*)
The target for Yeast is ME2 vs MIT,ME3,EXC,VAC,ERL.

datasets size dim target IR datasets size dim target IR
bal - Balance 625 4 L 1.2 pag - Pageblocks 5472 10 2,3,4,5 8.8
aut - Autompg 392 7 2,3 1.7 sat - Satimage 6435 36 4 9.3
ion - Ionosphere 351 34 b 1.8 yea - Yeast-0-5-6-7-9vs4 528 8 (*) 9.35
pim - Pima 768 8 positive 1.87 lib - Libras 360 90 1 14
gla - Glass 214 9 1 2.1 y17 - Yeast-1vs7 459 7 VAC vs NUC 14.3
ger - German 1000 23 2 2.3 arr - Arrhythmia 452 278 6 17
ye1 - Yeast1 1484 8 NUC 2.46 sol - Solar-flare-M0 1389 32 M0 19
hab - Haberman 306 3 positive 2.78 oil - Oil 937 49 minority 22
ve3 - Vehicle3 846 18 Class 3 Opel 2.99 ye4 - Yeast4 1484 8 ME2 28.1
hay - Hayes 132 4 3 3.4 wi4 - Redwinequality4 1599 11 4 29.2
seg - Segmentation 2310 19 WINDOW 6 ye5 - Yeast5 1484 8 ME1 32.73
ab8 - Abalone8 4177 10 8 6.4 ye6 - Yeast6 1484 8 EXC 41.4
ye3 - Yeast3 1484 8 ME3 8.1 a17 - Abalone17 4177 10 17 71
ec3 - Ecoli3 336 7 imU 8.6 a20 - Abalone20 4177 10 20 159.7

our experimental study by an evaluation of the performance of the local version
of γk−NN (in Section 5.4).

5.1 Experimental setup

For these experiments, we use 28 public datasets from the well-known UCI1 and
KEEL2 repositories. The main properties of these datasets are summarized in
Table 2, including the imbalance ratio IR defined as: IR= m−/m+.

All the datasets are normalized using a min-max normalization such that
each feature lies in the range [−1, 1]. We randomly draw 80%-20% splits of
the data to generate the training and test sets respectively. Hyperparameters
are tuned with a 10-fold cross-validation over the training set. We repeat the
process over 5 runs and average the results in terms of the four performance
measures. In a first series of experiments, we compare our method γk−NN to
6 other distance-based baselines:

• the classic k−Nearest Neighbor algorithm (k−NN),

• the weighted version of k−NN using the inverse distance as a weight to
predict the label (wk−NN) [12],

• the class weighted version of k−NN (cwk−NN) [2],

• the k−NN version where each positive is duplicated according to the IR
of the dataset (dupk−NN),

1https://archive.ics.uci.edu/ml/datasets.html
2https://sci2s.ugr.es/keel/datasets.php
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• kRNN where the sparsity of minority examples is taken into account [39]
by modifying the way the posterior probability of belonging to the positive
class is computed.

• the metric learning method LMNN [35].

The hyperparameter µ of LMNN, weighting the impact of impostor constraints
(see [35] for more details), is tuned in the range [0, 1] using a step of 0.1. Our
γ parameter is tuned in the range [0, 1]3 using a step of 0.1. For kRNN, we use
the parameters values as described in [39].

In a second series of experiments, we compare our method to five over-
sampling strategies described in Section 3.2: SMOTE, Borderline-SMOTE,
ADASYN, SMOTE with ENN, SMOTE with Tomek’s link. The number of gen-

erated positive examples is tuned over the set of ratios
m+

m−
∈ {0.1, 0.2, ..., 0.9, 1.0}

and such that the new ratio is greater than the original one before sampling.
The other parameters of these methods are the default ones used by the package
ImbalancedLearn of Scikit-learn. We report the performance of the best over-
sampler that we denote as OS?. In order to evaluate how both strategies are
complementary, we also combine γk−NN with oversamplers, and use the no-
tation (OS+γk−NN)? to indicate the best combinaison obtained by a 10-cross
validation. In this latter scenario, we propose to learn a different γ value to be
used with the synthetic positives. Indeed, some of the synthetic examples may
be generated in some true negative areas and, in this situation, it might be more
appropriate to decrease their influence. The γ parameter for these examples is
tuned in the range [0, 2] using a step of 0.1. Note the upper bound of the range
is now set to 2. This allows γk−NN to adapt to the different sampling strate-
gies of the oversamplers and enables the possibility to move synthetic positive
examples away from dense regions of negatives by selecting γ > 1.

5.2 Analysis of the results

The results on the public datasets using the six baselines are provided in Ta-
bles 4,5,6 and 7 for the four different performance measures F1, BA, GM and
G1 respectively. These tables report the complete results when k = 1 (in k−NN)
and provide only the mean results over the 28 datasets for k = 3, for the sake
of concision and because the behavior for this latter value is similar. Overall,
our γk−NN approach performs much better than its competitors by achieving
an improvement of 0.7 to 5 points on average, compared to the other state-
of-the-art algorithms when k = 1. It is worth noticing that the results are
even better when k = 3. But the certainly most striking result comes from
the capacity of γk−NN associated with the Balanced Accuracy (BA) in Ta-
ble 5 and G-mean (GM) in Table 6 to address large imbalanced learning tasks.
While the other methods struggle to get good results, γk−NN with BA and

3We experimentally noticed that using a larger range for γ leads in fact to a potential
decrease of performances due to overfitting phenomena. This behavior is actually in line with
the analysis provided in Section 4.2.
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GM gets the best performance 19 and 20 times respectively over the 22 largest
imbalanced datasets (from Yeast1 to Abalone20). Even the metric learning
algorithm LMNN fails to be competitive while it optimizes a representation of
the data specifically dedicated to deal with nearest neighbor classification. In-
deed, LMNN suffers from the lack of positive data to learn an efficient projection
when dealing with highly imbalanced tasks. On the other hand, γk−NN does
not seem particularly sensitive to the imbalance ratio.
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Figure 4: Comparison of k−NN, γk−NN, the best oversampler among SMOTE,
BorderSmote, SMOTE+ENN, SMOTE+Tomek’s links and ADASYN, and the
best coupling oversampler + γk−NN, in terms of mean of F-measure (F1),
Balanced Accuracy (BA), Geometric Mean (GM) and G-measure (G1) over all
the datasets, for k = 1 (left) and k = 3 (right).

The second series of experiments focuses on the use of sampling strategies
and the potential interest of combining γk−NN with a synthetic generation
of additional positive examples. Fig. 4 compactly summarizes, for the four
measures of interest and for both k = 1 (on the left) and k = 3 (on the right),
the impact of sampling strategies. Two main comments can be made from
these results. First, γk−NN is complementary to the oversamplers. Indeed,
for both k = 1 and k = 3 and for 3 out of 4 measures (G1 excluded), using
γk−NN in addition with a sampler leads to better results and gives evidence
of the fact that γk−NN and oversamplers do not work the same way, focusing
on different subparts of the feature space. While γk−NN aims at expanding
the decision boundaries in favor of the positives in the neighborhood of the
test query, oversamplers rather tend to fill in the empty parts of the space
by generating synthetic positive examples. Second, γk−NN (red bars) alone
is shown to be very competitive while benefiting from its simplicity. Indeed,
we remind the reader that the performance of OS? (resp. (OS+γk−NN)?)
are obtained from the costly selection of the best oversampler (resp. γk−NN +
oversampler) for each dataset. Therefore, the green and black bars in Fig. 4 give
an optimistic usage of an oversampling strategy because it is generated from the
average obtained over a large set of oversamplers (SMOTE, Borderline-SMOTE,
ADASYN, SMOTE+ ENN and SMOTE with Tomek’s link) that can be seen
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as an additional hyperparameter. On the other hand, in γk−NN, only one
parameter (γ) is required to be tuned.

Fig. 5 illustrates, for the F1 and GM measures and k = 1, a dataset-wise
view of the advantage of combining γk−NN with an oversampler compared to
a standard k−NN. A point (representing one of the 28 datasets) below the
line y = x means that k−NN is outperformed. Moreover, a move of a point
(illustrated by a right arrow) from left to right illustrates that the joint approach
leads to better results. We can see that even for the least favorable measure
(i.e. F1 on the left), most of the datasets are below the line and benefit from
γk−NN associated to an oversampler.
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Figure 5: Comparison of k−NN with (i) γk−NN (points in blue) and (ii) γk−NN
coupled with the best sampling strategy (points in orange) for each dataset, in
terms of F-measure (left) and Geometric Mean (right) and for k = 1. Points
below the line y = x means that k−NN is outperformed. A move from left to
right illustrates that the joint approach is better.

In Fig 6 (left), we illustrate how having two γ parameters (γ on reals and γ
on synthetics) gives the flexibility to independently control the influence of the
actual and artificial positives respectively. The other figures (center and right)
represent two examples of heatmaps of the F-measure (note that the trend is
the same for the other 3 measures). We can note that while the γ parameter
tuned for the real positives tends to be smaller than 1 (according to the analysis
of Section 4.2), the γ parameter required to deal with the synthetic positives is
sometimes smaller (right), sometimes greater than 1 (center), depending on the
underlying density and the peculiarity of the feature space.

Recall that Propositions 1 and 2 in Section 4.2 tell us that selecting a γ
parameter smaller than 1 for the real positives should tend to reduce the false
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Figure 6: Left: Illustration on a toy dataset of the effect of varying γ for the
generated positive points (in grey) while keeping a fixed γ = 0.4 for the real
positives. Center and Right: Two examples of heatmap for the F-Measure that
show the pair of γ (on real and synthetic positives) corresponding to the best
joint approach (OS+ γk−NN)∗ on Abalone8 (center) and German (right).

negative (FN) rate while still optimizing the performance measure. To illustrate
our theoretical study, we plot in Fig. 7 the percentage of FN generated by the
7 compared methods. As expected, we can note that whatever the performance
measure and the value of k (k = 1 on the left and k = 3 on the right), the
number of FN is much smaller than that of the competitors explaining why
γk−NN gets the best results.

F1 BA GM G1
0

1

2

3

4

5

6

7

1NN_FN_mean.pdf

kNN
dup_kNN
w_kNN
cw_kNN
kRNN
LMNN
γk−NN

F1 BA GM G1
0

1

2

3

4

5

6

7

3NN_FN_mean.pdf

kNN
dup_kNN
w_kNN
cw_kNN
kRNN
LMNN
γk−NN

Figure 7: Percentage of false negatives (FN) generated by the 7 compared meth-
ods w.r.t. the four performance measures with 1−NN (left) and 3−NN (right).

5.3 A qualitative analysis on the MNIST dataset

In order to visualize the qualitative impact of γk−NN, we conduct in this section
some additional experiments on the MNIST dataset. To generate a minority
class, we build 10 datasets MNISTi (one for each digit, i = 0, ..., 9) from the
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Table 3: Comparison of γk−NN and k−NN on MNIST for k = 3.
F1 BA GM G1

k−NN 97.18 98.31 98.30 97.19
γk−NN 97.21 98.97 98.97 97.21

original one by considering the label i as the minority class and all the other
classes representing the remaining digits as the majority class.

As previously done, a 10-fold CV is performed to find the optimal value
γ. The mean results of the comparison of γk−NN with k−NN are reported
in Table 3 where k = 3. We can see that whatever the performance measure,
γk−NN allows us to outperform k−NN. As expected, the gain on this well-
known MNIST dataset is not significant due to the already very high accuracy
reached by the standard k−NN. However, the main objective here is elsewhere.
We aim at showing the quality of both the space and the neighborhoods induced
by γk−NN. To illustrate this purpose and visualize how using dγ (as defined
in Eq.(1)) bends the feature space, we leverage t-SNE to embed the MNISTi
points in 2D. Note that even if dγ is not an actual distance (the symmetry is
not satisfied), it can still be used with t-SNE that only embeds points while
preserving relative pair-wise dissimilarities.

Following the definition of dγ , we scale the Euclidean distance when the
second point in the pair is a positive one. Fig. 8 compares, on the MNIST2
dataset, the output of t-SNE when using d (left) and dγ (right). The analysis of
this embedding shows that dγ is able to gather minority examples together in a
denser cluster while the Euclidean distance leads to a space where the positive
samples are more scattered, some being in the middle of negative regions. This
impact of γk−NN on the decision boundaries, that we see with this t-SNE
experiment, is also illustrated in Fig. 9 which shows some examples for which,
the γk−NN predictions are different from that of k−NN according to their 3-
nearest neighbors (on the original dataset).

5.4 On local-γk−NN using clustering

We now evaluate our local algorithm local-γk−NN (as presented in Section 4.4),
which partitions the input space into q clusters (C1, C2, ..., Cq) and uses a pa-
rameter γj for each cluster j. The partitioning is performed using k-means,
run on the training set. Note that we consider two ways of obtaining the γj
values. The first version (V1) consists in applying the 10 fold cross-validation
(CV) procedure in each cluster Cj to tune γj . At test time, a new point x′ is
first assigned to the nearest cluster Ck based on the closest centroid using the
Euclidean distance, and the corresponding γk value is used to scale the distances
to the positives.
We propose a second version (V2) to compensate for the fact that V1 is at risk
of generating very different values of γ for two neighboring clusters. While the
test decision is similar to V1, the γj values are obtained differently, by comput-
ing several clusterings. In V2, the 10 fold CV also includes the clustering, so 10
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Figure 8: Visualization on MNIST2 of the influence of the Euclidean distance
d (left) and dγ (right) with t-SNE. The red (resp. blue) points correspond to
negatives (resp. positives). The blue areas represent the subparts of the space
leading to a positive classification by a 3−NN.

additional partitionings are performed. Each training point x will thus fall in 9
clusters (in the 9 different clusterings for which the point is not in the validation
fold). Each point thus has 9 “best” γ values that we average to get a single

value γx for every single point. In the end, γj is computed as
1

|Cj |
∑

x∈Cj γx,

i.e. the average γ value of the training points falling into cluster j.
The results are provided for the 4 performance measures in Fig. 10, 11, 12

and 13. Despite an inherent increase of the time complexity, it is worth noting
that V2 is better than the original γk−NN (on average over the 28 datasets),
while V1 does not lead to improvements probably due to overfitting phenomena.
Note also that in a huge majority of the datasets (around 90%), the V2 version
of local-γk−NN equals or outperforms γk−NN.

6 Conclusion

In this paper, we have proposed a new approach, γk−NN, that addresses the
problem of learning from imbalanced datasets. It is based on the k−NN al-
gorithm but it modifies the distance to the positive examples by expanding
the decision boundaries around these minority samples. It has been shown to
outperform its competitors in terms of several performance measures. Further-
more, we gave evidence of the complementarity of γk−NN with oversampling
strategies. Our algorithm, despite its simplicity, is highly effective and its local
version local-γk−NN has shown to be even more efficient by taking the spatial
specificity of the distributions into account.

Two main lines of research deserve future investigations. First, we plan to
extend the idea of the local variant of γk−NN by proposing a multi-view learning
approach, where the different results of γk−NN obtained with different subsets
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Figure 9: First three columns: 3 nearest neighbors using k−NN; fourth column:
the test query; last three figures: 3 nearest neighbors using γk−NN.

of features (the different views) would be combined in some way. Second, we can
note that tuning γ is equivalent to building a diagonal matrix (with γ2 in the
diagonal) and applying a Mahalanobis distance only between a query and a pos-
itive example. This comment opens the door to a new family of metric learning
algorithms dedicated to optimizing a PSD matrix under (FP, FN)-based con-
straints that could leverage recent metric learning approaches for imbalanced
data [34].
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Table 4: Results for k = 1 with F1 as performance measure over 5 runs. The
standard deviation is indicated after the ± sign and the best results on each
dataset is indicated in bold. Only the mean value when k = 3 is shown in the
last line.

datasets k−NN dupk−NN wk−NN cwk−NN kRNN LMNN γk−NN
Balance 84.5±2.2 84.5±2.2 84.5±2.2 84.4±1.7 88.2±1.2 84.1±4.6 84.4±1.7
Autompg 76.7±7.4 76.7±7.4 76.7±7.4 76.2±6.2 82.5±2.8 77.5±3.1 81.8±3.0
Ionosphere 80.1±4.2 80.1±4.2 80.1±4.2 83.3±3.0 0.83±3.0 81.3±3.3 89.0±4.5
Pima 55.8±4.7 55.8±4.7 55.8±4.7 61.1±3.7 62.3±3.9 55.9±2.8 61.2±5.4
Glass 70.4±8.7 70.4±8.7 70.4±8.7 73.2±6.4 76.2±8.6 68.9±7.7 70.5±7.5
German 37.9±5.0 37.9±5.0 37.9±5.0 41.1±3.6 43.7±4.0 41.0±3.8 47.7±1.9
Yeast1 52.5±2.6 52.5±2.6 52.5±2.6 53.3±3.6 52.5±2.1 51.3±3.7 54.8±3.8
Haberman 23.4±6.7 23.4±6.7 23.4±6.7 35.5±10 33.2±7.6 24.6±6.9 49.2±4.4
Vehicle3 51.0±3.4 51.0±3.4 51.0±3.4 51.2±3.7 56.1±3.3 54.7±3.6 55.1±3.4
Hayes 65.9±10 65.9±10 65.9±10 87.5±4.9 76.6±8.3 76.8±14 78.7±10
Segmentation 88.7±2.9 88.7±2.9 88.7±2.9 88.9±2.8 87.2±1.6 91.2±2.3 88.7±2.9
Abalone8 21.4±1.3 21.4±1.3 21.4±1.3 31.3±0.9 23.8±1.1 21.9±1.7 31.1±2.0
Yeast3 65.1±2.5 65.1±2.5 65.1±2.5 63.0±2.6 69.4±1.2 63.6±1.0 65.9±2.3
Ecoli3 52.9±9.7 52.9±9.7 52.9±9.7 54.1±7.8 61.2±5.8 57.2±11 53.9±7.0
Pageblocks 81.6±2.6 81.6±2.6 81.6±2.6 81.1±2.4 81.3±4.4 81.5±3.2 81.2±2.2
Satimage 67.6±3.6 67.6±3.6 67.6±3.6 68.0±3.4 68.8±2.7 69.0±4.5 67.6±3.6
Yeast-0-5-6-7-9vs4 40.9±11 40.9±11 40.9±11 49.7±4.1 51.9±7.3 45.5±15 53.4±8.3
Libras 78.9±8.7 78.9±8.7 78.9±8.7 78.9±8.7 73.7±6.0 78.8±5.4 89.1±8.1
Yeast-1vs7 48.4±6.0 48.4±6.0 48.4±6.0 23.8±5.3 49.1±8.8 40.4±16.6 47.2±5.0
Arrythmia 16.1±20 16.1±20 16.1±20 15.6±20 15.6±20 20.2±21 8.9±12
Solar-flare-M0 15.6±5.6 15.6±5.6 15.6±5.6 18.4±1.9 21.4±6.3 15.3±10 18.6±2.1
Oil 53.5±11.2 53.5±11 53.5±11 57.2±9.7 55.5±5.2 61.3±12 58.3±12
Yeast4 30.6±11.3 30.6±11 30.6±11 29.2±1.9 41.4±4.0 32.4±12 39.0±8.4
Redwinequality4 10.4±5.7 10.4±5.7 10.4±5.7 12.4±2.6 12.9±7.0 12.0±6.9 13.2±5.6
Yeast5 70.0±11 70.0±11 70.0±11 56.4±8.2 62.6±8.3 70.1±12 67.0±9.8
Yeast6 49.4±13 49.4±13 49.4±13 26.2±2.3 49.9±8.6 47.1±19 46.1±10
Abalone17 14.8±9.7 14.8±9.7 14.8±9.7 10.5±4.0 16.3±6.9 14.3±6.7 17.3±9.4
Abalone20 00.0±0.0 00.0±0.0 00.0±00.0 05.2±3.5 06.6±6.7 00.0±0.0 03.6±4.7
Mean (k=1) 50.1 50.1 50.1 50.6 53.7 51.4 54.4

Mean (k=3) 49.3 54.0 50.0 52.2 53.2 51.9 55.8
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Figure 10: Comparison of γ1−NN with the two versions of local-γ1−NN, in
terms of F-measure.
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Table 5: Results for k = 1 with BA as performance measure over 5 runs. The
standard deviation is indicated after the ± sign and the best results on each
dataset is indicated in bold. Only the mean value when k = 3 is shown in the
last line.

datasets k−NN dupk−NN wk−NN cwk−NN kRNN LMNN γk−NN
Balance 85.4±2.1 85.4±2.1 85.4±2.1 84.2±1.9 88.9±1.2 85.5±4.1 84.2±1.9
autompg 81.6±6.1 81.6±6.1 81.6±6.1 81.1±5.2 86.4±2.6 81.9±2.6 86.0±2.9
Ionosphere 83.6±3.0 83.6±3.0 83.6±3.0 85.9±2.1 85.6±2.1 84.6±2.4 91.2±3.6
Pima 66.6±3.4 66.6±3.4 66.6±3.4 69.4±3.3 70.4±3.4 66.7±1.7 69.7±3.7
Glass 78.2±6.5 78.2±6.5 78.2±6.5 80.3±4.8 83.3±6.7 77.1±6.4 76.5±4.3
German 57.1±3.0 57.1±3.0 57.1±3.0 58.0±2.4 59.0±3.1 58.6±2.6 57.7±3.0
Yeast1 66.6±1.9 66.6±1.9 66.6±1.9 66.5±3.2 66.2±1.7 65.8±2.6 67.2±3.8
Haberman 49.8±5.4 49.8±5.4 49.8±5.4 52.7±9.0 53.3±6.2 50.4±5.4 61.1±4.7
Vehicle3 67.3±2.3 67.3±2.3 67.3±2.3 67.4±2.8 71.2±2.7 70.1±3.2 72.6±1.1
Hayes 75.7±6.0 75.7±6.0 75.7±6.0 90.7±4.6 82.4±5.4 82.9±8.7 91.9±4.2
Segmentation 93.5±2.2 93.5±2.2 93.5±2.2 95.1±2.1 95.5±0.9 94.9±1.5 96.2±0.9
Abalone8 54.5±0.7 54.5±0.7 54.5±0.7 61.3±0.8 55.7±0.7 54.9±0.9 62.6±1.8
Yeast3 79.4±2.9 79.4±2.9 79.4±2.9 85.5±2.4 83.4±2.8 80.4±2.5 85.7±2.9
Ecoli3 74.4±6.9 74.4±6.9 74.4±6.9 82.3±5.9 81.2±5.2 73.3±3.5 85.5±8.1
Pageblocks 88.5±1.5 88.5±1.5 88.5±1.5 91.4±2.1 90.4±2.3 88.7±1.9 92.9±1.3
Satimage 83.0±2.0 83.0±2.0 83.0±2.0 87.5±1.7 86.6±1.6 83.8±1.8 89.1±1.2
Yeast-0-5-6-7-9vs4 65.4±5.2 65.4±5.2 65.4±5.2 78.3±3.7 71.6±3.3 68.1±7.4 79.3±3.6
Libras 83.9±5.0 83.9±5.0 83.9±5.0 83.9±5.0 83.4±4.8 83.9±4.7 96.7±3.4
Yeast-1vs7 71.7±3.2 71.7±3.2 71.7±3.2 67.5±7.7 73.1±5.3 68.1±1.0 72.5±7.0
Arrythmia 57.5±16 57.5±16 57.5±16 56.8±17 57.2±16 59.7±16 54.7±6.5
Solar-flare-M0 55.1±2.5 55.1±2.5 55.1±2.5 65.1±1.8 58.2±2.9 55.0±4.3 67.3±4.2
Oil 76.6±8.8 76.6±8.8 76.6±8.8 80.7±6.2 83.4±4.0 79.3±9.7 84.6±4.4
Yeast4 64.9±8.3 64.9±8.3 64.9±8.3 78.7±2.1 77.5±3.5 66.6±8.5 79.3±3.5
Redwinequality4 53.5±2.7 53.5±2.7 53.5±2.7 58.7±3.9 55.7±4.4 54.3±3.2 69.2±5.8
Yeast5 87.2±7.4 87.2±7.4 87.2±7.4 91.4±5.5 90.9±5.7 86.2±6.7 95.1±2.8
Yeast6 77.7±10 77.7±10 77.7±10 84.9±9.3 85.7±9.3 79.0±14 79.2±7.0
Abalone17 56.8±4.9 56.8±4.9 56.8±4.9 64.2±7.3 63.2±6.8 57.7±3.7 67.0±4.2
Abalone20 49.7±0.1 49.7±0.1 49.7±0.1 58.8±6.9 55.5±6.4 49.7±0.1 68.8±11
Mean (k=1) 70.9 70.9 70.9 75.3 74.8 71.7 78.0

Mean (k=3) 69.6 75.4 69.9 75.5 74.2 71.7 79.7
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Figure 11: Comparison of γ1−NN with the two versions of local-γ1−NN, in
terms of Balanced Accuracy (BA).
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Table 6: Results for k = 1 with GM as performance measure over 5 runs. The
standard deviation is indicated after the ± sign and the best results on each
dataset is indicated in bold. Only the mean value when k = 3 is shown in the
last line.

datasets k−NN dupk−NN wk−NN cwk−NN kRNN LMNN γk−NN
Balance 85.3±2.1 85.3±2.1 85.3±2.1 82.8±2.2 88.8±1.2 85.4±4.2 82.8±2.2
Autopmg 81.2±6.4 81.2±6.4 81.2±6.4 80.7±5.4 86.2±2.5 81.6±2.6 85.7±3.1
Ionosphere 82.1±3.5 82.1±3.5 82.1±3.5 84.9±2.3 84.7±2.3 84.1±2.2 91.1±3.7
Pima 65.0±3.8 65.0±3.8 65.0±3.8 69.2±3.2 70.3±3.4 65.1±2.3 68.9±3.9
Glass 77.3±7.2 77.3±7.2 77.3±7.2 79.7±5.3 82.6±7.2 76.1±6.8 77.7±6.0
German 52.4±4.2 52.4±4.2 52.4±4.2 55.4±3.0 57.6±3.4 55.1±3.2 57.0±3.0
Yeast1 64.8±1.8 64.8±1.8 64.8±1.8 66.3±3.1 65.6±1.7 63.8±2.7 66.8±4.2
Haberman 39.7±6.4 39.7±6.4 39.7±6.4 51.4±9.8 49.6±6.8 40.9±5.9 55.6±7.9
Vehicle3 65.3±3.1 65.3±3.1 65.3±3.1 66.6±3.1 70.5±3.2 68.4±4.1 72.4±1.6
Hayes 71.8±8.6 71.8±8.6 71.8±8.6 90.2±5.1 80.6±6.6 80.3±11.9 91.5±4.6
Segmentation 93.3±2.3 93.3±2.3 93.3±2.3 95.0±2.2 95.5±0.9 94.9±1.5 96.2±0.9
Abalone8 43.1±1.6 43.1±1.6 43.1±1.6 59.6±0.9 47.2±1.6 43.6±2.1 63.3±2.2
Yeast3 77.4±3.9 77.4±3.9 77.4±3.9 85.2±2.9 82.3±3.6 78.9±3.4 85.3±3.5
Ecoli3 71.0±9.0 71.0±9.0 71.0±9.0 81.9±6.5 79.9±6.1 73.2±9.7 85.1±8.5
Pageblocks 87.9±1.6 87.9±1.6 87.9±1.6 91.2±2.2 90.1±2.5 88.1±2.0 92.9±1.3
Satimage 81.9±2.3 81.9±2.3 81.9±2.3 87.3±1.8 86.2±1.7 83.2±2.7 89.0±1.2
Yeast-0-5-6-7-9vs4 56.9±9.2 56.9±9.2 56.9±9.2 77.5±4.4 67.1±4.7 58.9±14.2 78.5±4.2
Libras 82.1±6.0 82.1±6.0 82.1±6.0 82.1±6.0 81.8±5.7 82.0±5.8 96.6±3.6
Yeast-1vs7 67.0±5.0 67.0±5.0 67.0±5.0 65.8±9.4 69.0±7.5 59.8±16.5 68.4±10.5
Arrythmia 29.3±36.7 29.3±36.7 29.3±36.7 29.2±36.6 29.2±36.6 37.9±34.1 54.3±8.4
Solar-flare-M0 36.5±6.1 36.5±6.1 36.5±6.1 63.9±1.9 43.5±5.9 36.3±8.6 68.2±4.3
Oil 72.4±12.4 72.4±12.4 72.4±12.4 78.6±7.9 82.3±5.0 75.8±12.7 80.3±2.2
Yeast4 54.7±13.5 54.7±13.5 54.7±13.5 78.1±2.4 75.3±4.4 57.6±14.1 78.2±4.3
Redwinequality4 26.3±14.0 26.3±14.0 26.3±14.0 50.1±7.1 35.1±17.9 28.8±15.4 69.5±6.6
Yeast5 86.0±8.4 86.0±8.4 86.0±8.4 91.1±6.0 90.4±6.2 85.0±7.3 95.1±2.8
Yeast6 73.7±13.7 73.7±13.7 73.7±13.7 83.7±11.1 84.1±11.2 73.7±21.1 84.8±6.2
Abalone17 36.8±11.3 36.8±11.3 36.8±11.3 56.9±11.2 52.4±12.1 39.4±9.4 68.2±6.4
Abalone20 00.0±0.0 00.0±0.0 00.0±0.0 45.4±11.8 27.6±23.4 00.0±0.0 66.3±12.6
Mean (k=1) 62.9 62.9 62.9 72.5 69.8 64.2 77.5

Mean (k=3) 58.4 71.6 59.1 70.71 67.6 61.7 78.9
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Figure 12: Comparison of γ1−NN with the two versions of local-γ1−NN, in
terms of Geometric Mean (GM).
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Table 7: Results for k = 1 with G1 as performance measure over 5 runs. The
standard deviation is indicated after the ± sign and the best results on each
dataset is indicated in bold. Only the mean value when k = 3 is shown in the
last line.

datasets k−NN dupk−NN wk−NN cwk−NN kRNN LMNN γk−NN
Balance 84.5±2.2 84.5±2.2 84.5±2.2 85.4±1.5 88.4±1.2 84.2±4.6 85.4±1.5
Autopmg 76.9±7.4 76.9±7.4 76.9±7.4 76.4±6.3 82.9±2.9 77.7±3.1 82.3±3.2
Ionosphere 81.4±3.9 81.4±3.9 81.4±3.9 84.2±3.0 83.8±2.9 82.0±3.1 89.2±4.3
Pima 56.1±4.6 56.1±4.6 56.1±4.6 61.3±3.6 62.6±3.8 56.1±2.6 61.8±4.9
Glass 71.0±8.2 71.0±8.2 71.0±8.2 73.8±5.9 77.4±7.9 69.6±7.6 68.5±5.0
German 38.1±5.0 38.1±5.0 38.1±5.0 41.1±3.6 43.8±4.0 41.1±3.8 55.1±1.1
Yeast1 52.6±2.6 52.6±2.6 52.6±2.6 53.8±3.5 52.9±2.0 51.4±3.6 56.7±2.4
Haberman 23.8±7.0 23.8±7.0 23.8±7.0 36.0±10.3 33.3±7.6 25.1±7.4 51.4±4.9
Vehicle3 51.1±3.4 51.1±3.4 51.1±3.4 51.5±3.7 56.5±3.6 54.8±3.7 59.1±1.2
Hayes 68.9±8.6 68.9±8.6 68.9±8.6 88.0±4.6 77.9±7.6 79.1±11.3 75.6±10.2
Segmentation 88.8±2.9 88.8±2.9 88.8±2.9 89.0±2.8 87.5±1.5 90.9±2.9 88.8±2.9
Abalone8 21.4±1.3 21.4±1.3 21.4±1.3 33.1±0.9 23.9±1.2 21.9±1.7 38.5±1.2
Yeast3 65.4±2.3 65.4±2.3 65.4±2.3 64.9±1.8 69.7±1.0 63.5±1.2 67.0±2.6
Ecoli3 53.0±9.8 53.0±9.8 53.0±9.8 56.7±8.0 61.7±6.2 54.2±10.0 54.9±10.7
Pageblocks 81.7±2.6 81.7±2.6 81.7±2.6 81.3±2.5 81.3±4.4 81.5±3.2 81.2±2.2
Satimage 67.7±3.6 67.7±3.6 67.7±3.6 69.0±3.2 69.3±2.7 69.0±4.5 67.2±4.0
Yeast-0-5-6-7-9vs4 42.2±10.4 42.2±10.4 42.2±10.4 51.9±4.3 52.7±7.5 46.5±14.8 47.6±14.4
Libras 80.2±8.5 80.2±8.5 80.2±8.5 80.2±8.5 74.3±6.0 75.9±4.5 88.0±8.3
Yeast-1vs7 48.7±5.8 48.7±5.8 48.7±5.8 29.2±7.3 49.3±8.8 50.0±12.5 47.9±7.1
Arrythmia 17.1±21.7 17.1±21.7 17.1±21.7 16.7±21.4 16.7±21.4 20.5±22.0 17.1±21.7
Solar-flare-M0 16.5±6.8 16.5±6.8 16.5±6.8 24.3±1.7 21.5±6.4 11.7±7.9 26.7±3.2
Oil 54.6±10.8 54.6±10.8 54.6±10.8 58.0±9.4 57.1±4.8 66.6±10.0 59.7±10.1
Yeast4 31.2±11.6 31.2±11.6 31.2±11.6 35.7±2.1 43.6±4.1 35.0±13.2 40.2±8.7
Redwinequality4 10.8±5.8 10.8±5.8 10.8±5.8 15.2±3.7 13.3±7.1 12.2±7.0 19.2±5.5
Yeast5 70.5±11.0 70.5±11.0 70.5±11.0 60.2±8.1 64.9±8.1 72.0±7.4 69.7±9.6
Yeast6 50.0±13.9 50.0±13.9 50.0±13.9 35.3±5.3 52.9±9.9 46.6±18.1 47.9±11.5
Abalone17 15.0±9.7 15.0±9.7 15.0±9.7 15.0±5.7 18.3±7.8 17.0±7.2 14.7±2.4
Abalone20 00.0±0.0 00.0±0.0 00.0±0.0 8.3±5.2 7.6±7.5 00.0±0.0 1.2±2.4
Mean (k=1) 50.7 50.7 50.7 52.7 54.5 52.0 55.8

Mean (k=3) 50.8 55.2 51.4 54.0 54.6 52.7 55.9
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Figure 13: Comparison of γ1−NN with the two versions of local-γ1−NN, in
terms of G-measure (G1).
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