Genesis of nanogratings in silica bulk via multipulse interplay of ultrafast photo-excitation and hydrodynamics - Archive ouverte HAL Access content directly
Journal Articles Advanced Optical Materials Year : 2021

Genesis of nanogratings in silica bulk via multipulse interplay of ultrafast photo-excitation and hydrodynamics

Abstract

Structuring below diffraction limit is key to developing new laser processing technologies as well as to understanding light-induced processes on mesoscopic scales, notably self-organization. Here, an advanced numerical perspective on the generation of embedded self-arranged sub-wavelength periodic patterns is developed, describing multipulse ultrafast laser interaction with bulk silica glass. Combining light and material dynamics, the approach couples self-consistently nonlinear propagation, electronic excitation, and fluid dynamics resulting in irreversible phase transitions and localized damage. With increasing the number of applied pulses, the modification changes from localized nanovoids and elongated random nanopatterns towards regular void nanogratings dominantly covering the spot of the focused laser beam. Driven by local and collective scattering events, the order imposed by electric field patterns is then amplified and stabilized by the material response. The model predicts the gradual evolution of the optical properties considering the complex interplay between material arrangement and the electromagnetic field distribution. It allows thus to define light transport optical functions optimizing losses and anisotropic effects.
Fichier principal
Vignette du fichier
AOM_LastSubmission.pdf (2.12 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

ujm-03321032 , version 1 (16-08-2021)

Identifiers

Cite

Anton Rudenko, Jean-Philippe Colombier, Tatiana E Itina, Razvan Stoian. Genesis of nanogratings in silica bulk via multipulse interplay of ultrafast photo-excitation and hydrodynamics. Advanced Optical Materials, 2021, pp.2100973. ⟨10.1002/adom.202100973⟩. ⟨ujm-03321032⟩
37 View
102 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More