Learning phase field mean curvature flows with neural networks - Algèbre, géométrie, logique Accéder directement au contenu
Article Dans Une Revue Journal of Computational Physics Année : 2022

Learning phase field mean curvature flows with neural networks

Résumé

We introduce in this paper new and very effective numerical methods based on neural networks for the approximation of the mean curvature flow of either oriented or non-orientable surfaces. To learn the correct interface evolution law, our neural networks are trained on phase field representations of exact evolving interfaces. The structures of the networks draw inspiration from splitting schemes used for the discretization of the Allen-Cahn equation. But when the latter approximate the mean curvature motion of oriented interfaces only, the approach we propose extends very naturally to the non-orientable case. Through a variety of examples, we show that our networks, trained only on flows of smooth and simplistic interfaces, generalize very well to more complex interfaces, either oriented or non-orientable, and possibly with singularities. Furthermore, they can be coupled easily with additional constraints which opens the way to various applications illustrating the flexibility and effectiveness of our approach: mean curvature flows with volume constraint, multiphase mean curvature flows, numerical approximation of Steiner trees or minimal surfaces.
Fichier principal
Vignette du fichier
ecrcNNCF_version_finale.pdf (3.74 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
licence : CC BY - Paternité

Dates et versions

hal-04010891 , version 1 (14-12-2021)
hal-04010891 , version 2 (11-07-2023)

Identifiants

Citer

Elie Bretin, Roland Denis, Simon Masnou, Garry Terii. Learning phase field mean curvature flows with neural networks. Journal of Computational Physics, 2022, 470, pp.111579. ⟨10.1016/j.jcp.2022.111579⟩. ⟨hal-04010891v2⟩
75 Consultations
120 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More