Heterogeneous Multidimensional Data Deblurring - Université Jean-Monnet-Saint-Étienne Access content directly
Conference Papers Year : 2008

Heterogeneous Multidimensional Data Deblurring

Abstract

We present a new scheme for deconvolution of heterogeneous multidimensional data (\eg spatio-temporal or spatio-spectral). It is derived, in a very general way, following an inverse problem approach. This method exploits the continuity of both object and PSF along the different dimensions to elaborate separable constraints. This improves the effectiveness and the robustness of the deconvolution technique. We demonstrate these improvements by processing real X-ray video sequences $(x,y,t)$ and astronomical multi-spectral images $(x,y,\lambda)$.
Fichier principal
Vignette du fichier
Soulez_EUSIPCO.pdf (252.1 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

ujm-00293660 , version 1 (07-07-2008)

Identifiers

  • HAL Id : ujm-00293660 , version 1

Cite

Ferréol Soulez, Éric Thiébaut, Alain Gressard, Raphaël Dauphin, Sébastien Bongard. Heterogeneous Multidimensional Data Deblurring. 16th European Signal Processing Conference (EUSIPCO 2008), Aug 2008, Lausanne, Switzerland. pp.0. ⟨ujm-00293660⟩
173 View
164 Download

Share

Gmail Facebook Twitter LinkedIn More