Toward Word Embedding for Personalized Information Retrieval - Université Jean-Monnet-Saint-Étienne Access content directly
Conference Papers Year : 2016

Toward Word Embedding for Personalized Information Retrieval

Abstract

This paper presents preliminary works on using Word Embedding (word2vec) for query expansion in the context of Personalized Information Retrieval. Traditionally, word em-beddings are learned on a general corpus, like Wikipedia. In this work we try to personalize the word embeddings learning , by achieving the learning on the user's profile. The word embeddings are then in the same context than the user interests. Our proposal is evaluated on the CLEF Social Book Search 2016 collection. The results obtained show that some efforts should be made in the way to apply Word Embedding in the context of Personalized Information Retrieval.
Fichier principal
Vignette du fichier
version_finale_personalization-word2vec.pdf (231.98 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

ujm-01377080 , version 1 (06-10-2016)

Identifiers

  • HAL Id : ujm-01377080 , version 1

Cite

Nawal Ould Amer, Philippe Mulhem, Mathias Géry. Toward Word Embedding for Personalized Information Retrieval. Neu-IR: The SIGIR 2016 Workshop on Neural Information Retrieval, Jul 2016, Pisa, Italy. ⟨ujm-01377080⟩
460 View
668 Download

Share

Gmail Facebook Twitter LinkedIn More